175
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting Epigenetic Networks with Polypharmacology: A New Avenue to Tackle Cancer

, &
Pages 731-742 | Published online: 15 Dec 2010

Bibliography

  • Feinberg AP : Phenotypic plasticity and the epigenetics of human disease.Nature447(7143) , 433–440 (2007).
  • Esteller M : Epigenetics in cancer.N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Ehrlich M : DNA methylation in cancer: too much, but also too little.Oncogene21(35) , 5400–5413 (2002).
  • Ehrlich M , JiangG, FialaE et al.: Hypomethylation and hypermethylation of DNA in wilms tumors.Oncogene21(43) , 6694–6702 (2002).
  • Mai A , AltucciL: Epidrugs to fight cancer: from chemistry to cancer treatment, the road ahead.Int. J. Biochem. Cell. Biol.41(1) , 199–213 (2009).
  • Nebbioso A , ClarkeN, VoltzE et al.: Tumor-selective action of HDAC inhibitors involves trail induction in acute myeloid leukemia cells.Nat. Med.11(1) , 77–84 (2005).
  • Manzo F , NebbiosoA, MiceliM et al.: TNF-related apoptosis-inducing ligand: Signalling of a ‘smart‘ molecule.Int. J. Biochem. Cell. Biol.41(3) , 460–466 (2009).
  • Pruitt K , ZinnRL, OhmJE et al.: Inhibition of sirt1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation.PLoS Genet.2(3) , E40 (2006).
  • Copeland RA , OlhavaEJ, ScottMP: Targeting epigenetic enzymes for drug discovery.Curr. Opin. Chem. Biol.14(4) , 505–510 (2010).
  • Hopkins AL : Network pharmacology: the next paradigm in drug discovery.Nat. Chem. Biol.4(11) , 682–690 (2008).
  • Kola I , LandisJ: Can the pharmaceutical industry reduce attrition rates?Nat. Rev. Drug Discov.3(8) , 711–715 (2004).
  • Sams-Dodd F : Optimizing the discovery organization for innovation.Drug Discov. Today10(15) , 1049–1056 (2005).
  • Sams-Dodd F : Target-based drug discovery: is something wrong?Drug Discov. Today10(2) , 139–147 (2005).
  • Zambrowicz BP , SandsAT: Knockouts model the 100 best-selling drugs – will they model the next 100?Nat. Rev. Drug Discov.2(1) , 38–51 (2003).
  • Zambrowicz BP , TurnerCA, SandsAT: Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry.Curr. Opin. Pharmacol.3(5) , 563–570 (2003).
  • Heng HH , LiuG, StevensJB, BremerSW, YeKJ, YeCJ: Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy.Curr. Drug Targets11(10) , 1304–1316 (2010).
  • Heng HH , StevensJB, BremerSW, YeKJ, LiuG, YeCJ: The evolutionary mechanism of cancer.J. Cell. Biochem.109(6) , 1072–1084 (2010).
  • Knight ZA , LinH, ShokatKM: Targeting the cancer kinome through polypharmacology.Nat. Rev. Cancer10(2) , 130–137 (2010).
  • Finkel T , Deng C-X, Mostoslavsky R: Recent progress in the biology and physiology of sirtuins. Nature460 , 587–591 (2009).
  • Bolden JE , PeartMJ, JohnstoneRW: Anticancer activities of histone deacetylase inhibitors.Nat. Rev. Drug Disc.5(9) , 769–784 (2006).
  • Huffman DM , GrizzleWE, BammanMM et al.: Sirt1 is significantly elevated in mouse and human prostate cancer.Cancer Res.67(14) , 6612–6618 (2007).
  • Ooi SKT , BestorTH: The colorful history of active DNA demethylation.Cell133 , 1145–1148 (2008).
  • Dekker FJ , HaismaHJ: Histone acetyl transferases as emerging drug targets.Drug Disc. Today14(19–20) , 942–948 (2009).
  • Mai A , RotiliD, TarantinoD et al.: Identification of 4-hydroxyquinolines inhibitors of p300/cbp histone acetyltransferases.Bioorg. Med. Chem. Lett.19(4) , 1132–1135 (2009).
  • Manzo F , TambaroFP, MaiA, AltucciL: Histone acetyltransferase inhibitors and preclinical studies.Expert Opin. Ther. Pat.19(6) , 761–774 (2009).
  • Souto JA , BenedettiR, OttoK et al.: New anacardic acid-inspired benzamides: Histone lysine acetyltransferase activators.ChemMedChem5(9) , 1530–1540 (2010).
  • Jones PA , BaylinSB: The epigenomics of cancer.Cell128(4) , 683–692 (2007).
  • Tsankova N , RenthalW, KumarA, NestlerEJ: Epigenetic regulation in psychiatric disorders.Nat. Rev. Neurosci.8(5) , 355–367 (2007).
  • Liu F , ChenX, Allali-HassaniA et al.: Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase g9a.J. Med. Chem.52 , 7950–7953 (2009).
  • Huynh T , ChenZ, PangS et al.: Optimization of pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1).Bioorg. Med. Chem. Lett.19(11) , 2924–2927 (2009).
  • Shi Y : Histone lysine demethylases: emerging roles in development, physiology and disease.Nat. Rev. Genet.8(11) , 829–833 (2007).
  • Yang M , CulhaneJC, SzewczukLM et al.: Structural basis of histone demethylation by LSD1 revealed by suicide inactivation.Nat. Struct. Mol. Biol14 , 535–539 (2007).
  • Yang M , CulhaneJC, SzewczukLM et al.: Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine.Biochemistry46(27) , 8058–8065 (2007).
  • Binda C , ValenteS, RomanenghiM et al.: Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2.J. Am. Chem. Soc.132(19) , 6827–6833 (2010).
  • Hamada S , Kim T-D, Suzuki T et al.: Synthesis and activity of N-oxalylglycine and its derivatives as jumonji C-domain-containing histone lysine demethylase inhibitors. Bioorg. Med. Chem. Lett.19 , 2852–2855 (2009).
  • Pray L : At the flick of a switch: epigenetic drugs.Chem. Biol.15(7) , 640–641 (2008).
  • Ma WW , AdjeiAA: Novel agents on the horizon for cancer therapy.CA Cancer J. Clin.59(2) , 111–137 (2009).
  • Keppler BR , ArcherTK: Chromatin-modifying enzymes as therapeutic targets – part 2.Expert Opin. Ther. Targets12(11) , 1457–1467 (2008).
  • Keppler BR , ArcherTK: Chromatin-modifying enzymes as therapeutic targets – part 1.Expert Opin. Ther. Targets12(10) , 1301–1312 (2008).
  • Morphy R , KayC, RankovicZ: From magic bullets to designed multiple ligands.Drug Disc. Today9 , 641–651 (2004).
  • Morphy R , RankovicZ: Designed multiple ligands. An emerging drug discovery paradigm.J. Med. Chem.48(21) , 6523–6543 (2005).
  • Meunier B : Hybrid molecules with a dual mode of action: dream or reality?Acc. Chem. Res.41 , 69–77 (2008).
  • Lai C -J, Bao R, Tao X et al.: CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res.70 , 3647–3656 (2010).
  • Mahboobi S , DoveS, SellmerA et al.: Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rβ, and histone deacetylases.J. Med. Chem.52 , 2265–2279 (2009).
  • Cai X , Zhai H-X, Wang J et al.: Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem.53 , 2000–2009 (2010).
  • Kozikowski AP , ChenY, SubhasishT et al.: Searching for disease modifiers – PKC activation and HDAC inhibition – a dual drug approach to Alzheimer‘s disease that decreases aβ production while blocking oxidative stress.ChemMedChem4(7) , 1095–1105 (2009).
  • Chen L , WilsonD, JayaramHN, PankiewiczKW: Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment.J. Med. Chem.50(26) , 6685–6691 (2007).
  • Lamblin M , DabbasB, SpingarnR et al.: Vitamin D receptor agonist/histone deacetylase inhibitor molecular hybrids.Bioorg. Med. Chem.18(11) , 4119–4137 (2010).
  • Tavera-Mendoza LE , QuachTD, DabbasB et al.: Incorporation of histone deacetylase inhibition into the structure of a nuclear receptor agonist.Proc. Natl Acad. Sci. USA105 , 8250–8255 (2008).
  • Griffith D , MorganMP, MarmionCJ: A novel anti-cancer bifunctional platinum drug candidate with dual DNA binding and histone deacetylase inhibitory activity.Chem. Commun.6735–6737 (2009).
  • Trapp J , JochumA, MeierR et al.: Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition.J. Med. Chem.49(25) , 7307–7316 (2006).
  • Wu L -P, Wang X, Li L et al.: Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and h3k9 methylation on the promoter. Mol. Cell. Biol.28 , 3219–3235 (2008).
  • Mai A , ChengD, BedfordMT et al.: Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors.J. Med. Chem.51(7) , 2279–2290 (2008).
  • Piña IC , GautschiJT, WangGYS et al.: Psammaplins from the sponge pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase.J. Org. Chem.68(10) , 3866–3873 (2003).
  • Trapp J , MeierR, HongwisetD, KassackMU, SipplW, JungM: Structure–activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins).ChemMedChem2 , 1419–1431 (2007).
  • Rose NR , NgSS, MecinovicãåJ et al.: Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases.J. Med. Chem.51 , 7053–7056 (2008).
  • Minucci S , PelicciPG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer.Nat. Rev. Cancer6 , 38–51 (2006).
  • Kim SC , SprungR, ChenY et al.: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.Mol. Cell23(4) , 607–618 (2006).
  • Huang J , SenguptaR, EspejoAB et al.: p53 is regulated by the lysine demethylase lsd1.Nature449 , 105–109 (2007).
  • Gargiulo G , LevyS, BucciG et al.: Na-seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation.Dev. Cell16(3) , 466–481 (2009).
  • Gargiulo G , MinucciS: Epigenomic profiling of cancer cells.Int. J. Biochem. Cell. Biol.41(1) , 127–135 (2009).
  • Brinkman AB , SimmerF, MaK, KaanA, ZhuJ, StunnenbergHG: Whole-genome DNA methylation profiling using MethylCap-seq.Methods52(3) , 232–236 (2010).

⬛ Website

⬛ Patent

  • Gronemeyer H, Altucci L, De Lera ÁR, Stunnenberg HG: Novel derivatives of psammaplin a, a method for their synthesis and their use for the prevention or treatment of cancer (PCT/IB2008/001887) (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.