75
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Mechanisms Involved in the Pathogenesis of Hepatobiliary Malignancies

Pages 233-243 | Published online: 14 Apr 2010

Bibliography

  • El-Serag HB , RudolphKL: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis.Gastroenterology132 , 2557–2576 (2007).
  • Llovet JM , BurroughsA, BruixJ: Hepatocellular carcinoma.Lancet362 , 1907–1917 (2003).
  • El-Serag HB , EngelsEA, LandgrenOet al.: Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: a population-based study of US veterans.Hepatology49 , 116–123 (2009).
  • Esteller M : Epigenetics in cancer.N. Engl. J. Med.358 , 1148–1159 (2008).
  • Boyault S , RickmanDS, de Reynies A et al.: Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology45 , 42–52 (2007).
  • Sharma S , KellyTK, JonesPA: Epigenetics in cancer.Carcinogenesis31 , 27–36 (2010).
  • Selaru FM , DavidS, MeltzerSJ, HamiltonJP: Epigenetic events in gastrointestinal cancer.Am. J. Gastroenterol.104 , 1910–1912 (2009).
  • Herman JG , BaylinSB: Gene silencing in cancer in association with promoter hypermethylation.N. Engl. J. Med.349 , 2042–2054 (2003).
  • Bestor TH : Transposons reanimated in mice.Cell122 , 322–325 (2005).
  • Feinberg AP , CuiH, OhlssonR: DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms.Semin. Cancer Biol.12 , 389–398 (2002).
  • Reik W , LewisA: Co-evolution of X-chromosome inactivation and imprinting in mammals.Nat. Rev. Genet.6 , 403–410 (2005).
  • Feinberg AP , VogelsteinB: Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature301 , 89–92 (1983).
  • Feinberg AP , OhlssonR, HenikoffS: The epigenetic progenitor origin of human cancer.Nat. Rev. Genet.7 , 21–33 (2006).
  • Wilson AS , PowerBE, MolloyPL: DNA hypomethylation and human diseases.Biochim. Biophys. Acta1775 , 138–162 (2007).
  • Ehrlich M : DNA methylation in cancer: too much, but also too little.Oncogene21 , 5400–5413 (2002).
  • Fraga MF , HerranzM, EspadaJet al.: A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors.Cancer Res.64 , 5527–5534 (2004).
  • Fraga MF , EstellerM: Epigenetics and aging: the targets and the marks.Trends Genet.23 , 413–418 (2007).
  • Herman JG , GraffJR, MyohanenS, NelkinBD, BaylinSB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands.Proc. Natl Acad. Sci. USA93 , 9821–9826 (1996).
  • Dupont JM , TostJ, JammesH, GutIG: De novo quantitative bisulfite sequencing using the pyrosequencing technology.Anal. Biochem.333 , 119–127 (2004).
  • Weber M , DaviesJJ, WittigDet al.: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.Nat. Genet.37 , 853–862 (2005).
  • Toyota M , HoC, AhujaNet al.: Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification.Cancer Res.59 , 2307–2312 (1999).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128 , 669–681 (2007).
  • Ballestar E , PazMF, ValleLet al.: Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer.EMBO J.22 , 6335–6345 (2003).
  • Jones PA , BaylinSB: The epigenomics of cancer.Cell128 , 683–692 (2007).
  • Ma X , EzzeldinHH, DiasioRB: Histone deacetylase inhibitors: current status and overview of recent clinical trials.Drugs69 , 1911–1934 (2009).
  • Esteller M : Cancer epigenomics: DNA methylomes and histone-modification maps.Nat. Rev. Genet.8 , 286–298 (2007).
  • Yang HI , LuSN, LiawYFet al.: Hepatitis B e antigen and the risk of hepatocellular carcinoma.N. Engl. J. Med.347 , 168–174 (2002).
  • Bruix J , ShermanM: Management of hepatocellular carcinoma.Hepatology42 , 1208–1236 (2005).
  • Hsu YS , ChienRN, YehCTet al.: Long-term outcome after spontaneous HBeAg seroconversion in patients with chronic hepatitis B.Hepatology35 , 1522–1527 (2002).
  • Soini Y , ChiaSC, BennettWPet al.: An aflatoxin-associated mutational hotspot at codon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico.Carcinogenesis17 , 1007–1012 (1996).
  • Yam JW , WongCM, NgIO: Molecular and functional genetics of hepatocellular carcinoma.Front. Biosci. (Schol. Ed.)2 , 117–134 (2010).
  • Baylin SB : Mechanisms underlying epigenetically mediated gene silencing in cancer.Semin. Cancer Biol.12 , 331–337 (2002).
  • Calvisi DF , LaduS, GordenAet al.: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma.J. Clin. Invest.117 , 2713–2722 (2007).
  • Roberts LR , GoresGJ: Hepatocellular carcinoma: molecular pathways and new therapeutic targets.Semin. Liver Dis.25 , 212–225 (2005).
  • Lee HS , KimBH, ChoNYet al.: Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma.Clin. Cancer Res.15 , 812–820 (2009).
  • Lee JS , ChuIS, HeoJet al.: Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling.Hepatology40 , 667–676 (2004).
  • Aravalli RN , SteerCJ, CressmanEN: Molecular mechanisms of hepatocellular carcinoma.Hepatology48 , 2047–2063 (2008).
  • Ying Y , TaoQ: Epigenetic disruption of the WNT/β-catenin signaling pathway in human cancers.Epigenetics4 , 307–312 (2009).
  • Csepregi A , RockenC, HoffmannJet al.: APC promoter methylation and protein expression in hepatocellular carcinoma.J. Cancer Res. Clin. Oncol.134 , 579–589 (2008).
  • Malumbres M , BarbacidM: To cycle or not to cycle: a critical decision in cancer.Nat. Rev. Cancer1 , 222–231 (2001).
  • Liew CT , LiHM, LoKWet al.: High frequency of p16INK4A gene alterations in hepatocellular carcinoma.Oncogene18 , 789–795 (1999).
  • Matsuda Y , IchidaT, MatsuzawaJet al.: p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma.Gastroenterology116 , 394–400 (1999).
  • Jin M , PiaoZ, KimNGet al.: p16 is a major inactivation target in hepatocellular carcinoma.Cancer89 , 60–68 (2000).
  • Roncalli M , BianchiP, BruniBet al.: Methylation framework of cell-cycle gene inhibitors in cirrhosis and associated hepatocellular carcinoma.Hepatology36 , 427–432 (2002).
  • Lee S , LeeHJ, KimJHet al.: Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis.Am. J. Pathol.163 , 1371–1378 (2003).
  • Zhang YJ , RossnerP Jr, Chen Y et al.: Aflatoxin B1 and polycyclic aromatic hydrocarbon adducts, p53 mutations and p16 methylation in liver tissue and plasma of hepatocellular carcinoma patients. Int. J. Cancer119 , 985–991 (2006).
  • Zhang YJ , WuHC, ShenJet al.: Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA.Clin. Cancer Res.13 , 2378–2384 (2007).
  • Matsuda Y : Molecular mechanism underlying the functional loss of cyclin-dependent kinase inhibitors p16 and p27 in hepatocellular carcinoma.World J. Gastroenterol.14 , 1734–1740 (2008).
  • Jung JK , AroraP, PaganoJS, JangKL: Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a–cyclin D1–CDK 4/6–pRb–E2F1 pathway.Cancer Res.67 , 5771–5778 (2007).
  • Wong IH , LoYM, YeoW, LauWY, JohnsonPJ: Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients.Clin. Cancer Res.6 , 3516–3521 (2000).
  • Newell P , ToffaninS, VillanuevaAet al.: RAS pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo.J. Hepatol.51 , 725–733 (2009).
  • Yea S , NarlaG, ZhaoXet al.: RAS promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma.Gastroenterology134 , 1521–1531 (2008).
  • Yasuda E , KumadaT, TakaiSet al.: Attenuated phosphorylation of heat shock protein 27 correlates with tumor progression in patients with hepatocellular carcinoma.Biochem. Biophys. Res. Commun.337 , 337–342 (2005).
  • Tischoff I , TannapfeA: DNA methylation in hepatocellular carcinoma.World J. Gastroenterol.14 , 1741–1748 (2008).
  • Yu J , NiM, XuJet al.: Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis.BMC Cancer2 , 29 (2002).
  • Nomoto S , KinoshitaT, KatoKet al.: Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma.Br. J. Cancer97 , 1260–1265 (2007).
  • Harder J , OpitzOG, BrabenderJet al.: Quantitative promoter methylation analysis of hepatocellular carcinoma, cirrhotic and normal liver.Int. J. Cancer122 , 2800–2804 (2008).
  • Kwon GY , YooBC, KohKC, ChoJW, ParkWS, ParkCK: Promoter methylation of E-cadherin in hepatocellular carcinomas and dysplastic nodules.J. Korean Med. Sci.20 , 242–247 (2005).
  • Hamilton JP , SatoF, GreenwaldBDet al.: Promoter methylation and response to chemotherapy and radiation in esophageal cancer.Clin. Gastroenterol. Hepatol.4 , 701–708 (2006).
  • Wang Y , ZhangD, ZhengW, LuoJ, BaiY, LuZ: Multiple gene methylation of nonsmall cell lung cancers evaluated with 3-dimensional microarray.Cancer112 , 1325–1336 (2008).
  • Hoque MO , BegumS, BraitMet al.: Tissue inhibitor of metalloproteinases-3 promoter methylation is an independent prognostic factor for bladder cancer.J. Urol.179 , 743–747 (2008).
  • Lu GL , WenJM, XuJM, ZhangM, XuRB, TianBL: [Relationship between TIMP-3 expression and promoter methylation of TIMP-3 gene in hepatocellular carcinoma].Zhonghua Bing Li Xue Za Zhi32 , 230–233 (2003).
  • Glockner SC , DhirM, YiJMet al.: Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer.Cancer Res.69 , 4691–4699 (2009).
  • Wong CM , NgYL, LeeJMet al.: Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma.Hepatology45 , 1129–1138 (2007).
  • Park JH , ChoSB, LeeWSet al.: [Methylation pattern of DNA repair genes and microsatellite instability in hepatocellular carcinoma].Korean J. Gastroenterol.48 , 327–336 (2006).
  • Matsukura S , SoejimaH, NakagawachiTet al.: CpG methylation of MGMT and hMLH1 promoter in hepatocellular carcinoma associated with hepatitis viral infection.Br. J. Cancer88 , 521–529 (2003).
  • Gerson SL , TreyJE, MillerK, BergerNA: Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues.Carcinogenesis7 , 745–749 (1986).
  • Su PF , LeeTC, LinPJet al.: Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma.Int. J. Cancer121 , 1257–1264 (2007).
  • Wang J , QinY, LiB, SunZ, YangB: Detection of aberrant promoter methylation of GSTP1 in the tumor and serum of Chinese human primary hepatocellular carcinoma patients.Clin. Biochem.39 , 344–348 (2006).
  • Nishida N , NagasakaT, NishimuraT, IkaiI, BolandCR, GoelA: Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma.Hepatology47 , 908–918 (2008).
  • Boland CR , ShinSK, GoelA: Promoter methylation in the genesis of gastrointestinal cancer.Yonsei Med. J.50 , 309–321 (2009).
  • Lee H , RyuSH, HongSSet al.: Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation.J. Gastroenterol. Hepatol.24 , 1445–1450 (2009).
  • Pogribny IP , RossSA, TryndyakVP, PogribnaM, PoirierLA, KarpinetsTV: Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4–20h2 and Suv–39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats.Carcinogenesis27 , 1180–1186 (2006).
  • Tischoff I , MarkwarthA, WitzigmannHet al.: Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors.Int. J. Cancer115 , 684–689 (2005).
  • Tischoff I , WittekindC, TannapfelA: Role of epigenetic alterations in cholangiocarcinoma.J. Hepatobiliary Pancreat. Surg.13 , 274–279 (2006).
  • Selaru FM , OlaruAV, KanTet al.: MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3.Hepatology49 , 1595–1601 (2009).
  • Doi A , ParkIH, WenBet al.: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts.Nat. Genet.41 , 1350–1353 (2009).
  • Llovet JM , RicciS, MazzaferroVet al.: Sorafenib in advanced hepatocellular carcinoma.N. Engl. J. Med.359 , 378–390 (2008).
  • Liu L , CaoY, ChenCet al.: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5.Cancer Res.66 , 11851–11858 (2006).
  • Villanueva A , ChiangDY, NewellPet al.: Pivotal role of mTOR signaling in hepatocellular carcinoma.Gastroenterology135 , 1972–1983 , 1983 E1–E11 (2008).
  • Calvisi DF , LaduS, GordenAet al.: Ubiquitous activation of RAS and JAK/STAT pathways in human HCC.Gastroenterology130 , 1117–1128 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.