206
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetics and brain evolution

Pages 183-191 | Published online: 20 Apr 2011

Bibliography

  • Martin DI , WardR, SuterCM: Germline epimutation: a basis for epigenetic disease in humans.Ann. NY Acad. Sci.1054 , 68–77 (2005).
  • Keverne EB : Monoallelic gene expression and mammalian evolution.BioEssays31 , 1318–1326 (2009).
  • Falkowski PG , KatzME, MilliganAJet al.: The rise of oxygen over the past 205 million years and the evolution of large placental mammals.Science309 , 2202–2204 (2005).
  • Carter AM , PijnenborgR: Evolution of invasive placentation with special reference to non-human primates.Best Pract. Res. Clin. Obstet. Gynaecol. (2010) (Epub ahead of print).
  • Curley JP , BartonSC, SuraniAM, KeverneEB: Co-adaptation in mother and infant regulated by a paternally expressed imprinted gene.Proc. R. Soc. Lond. B Biol. Sci271 , 1303–1309 (2004).
  • Sasaki H , MatsuiY: Epigenetic events in mammalian germ-cell development: reprogramming and beyond.Nat. Rev.9 , 129–140 (2008).
  • Renfree MB , T.AH, ShawG, Marshall-GravesJA, PaskAJ: Evolution of genomic imprinting: insights from marsupials and monotremes.Annu. Rev. Genomics Hum. Genet.10 , 11.11–11.22 (2009).
  • Feil R : Epigenetic asymmetry in the zygote and mammalian development.Int. J. Dev. Biol.53 , 191–201 (2009).
  • Schultz RM , ProudhonC, BestorTHet al.: The parental non-equivalence of imprinting control regions during mammalian development and evolution.PLoS Genet.6 , e1001214 (2010).
  • Gebert C , KunkelD, GrinbergA, PfeiferK: H19 imprinting control region methylation requires an imprinted environment only in the male germ line.Mol. Cell Biol.30 , 1108–1115 (2010).
  • Schaefer CB , OoiSKT, BestorTH, Bourc‘hisD: Epigenetic decisions in mammalian germ cells.Science316 , 398–399 (2007).
  • Delaval K , GovinJ, CerqueiraFet al.: Differential histone modifications mark mouse imprinting control regions during spermatogenesis.EMBO J.26 , 720–729 (2007).
  • Kobayashi H , SudaC, AbeTet al.: Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternaly methylated DMRs.Cytogenet. Genome Res.113 , 130–137 (2006).
  • Keverne EB , FundeleR, NarashimhaM, BartonSC, SuraniMA: Genomic imprinting and the differential roles of parental genomes in brain development.Dev. Brain Res.92 , 91–100 (1996).
  • Allen ND , LoganK, DrageDJ, NorrisML, KeverneEB: Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behaviour.Proc. Natl. Acad. Sci. USA92 , 10782–10786 (1995).
  • Keverne EB , MartelFL, NevisonCM: Primate brain evolution: genetic and functional considerations.Proc. R. Soc. Lond. B262 , 689–696 (1996).
  • Keverne EB , CurleyJP: Epigenetics, brain evolution and behaviour.Frontiers Neuroendocrinol.29 , 398–412 (2008).
  • Curley JP , PinnockSB, DicksonSLet al.: Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3.FASEB J.19 , 1302–1304 (2005).
  • Davies W , LynnPMY, RelkovicD, WilkinsonLW: Imprinted genes and neuroendocrine function.Front. Neuroendocrinol.29 , 413–427 (2008).
  • Mercer RE , KwolekEM, BischofJMet al.: Regionally reduced brain volume, altered serotonin neurochemistry, and abnormal behavior in mice null for the circadian rhythm output gene Magel2.Am. J. Genet. B Neuropsychiatr. Genet.150B , 1085–1099 (2009).
  • Bischof JM , StewartCL, WevrickR: Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome.Hum. Mol. Genet.16 , 2713–2719 (2007).
  • Muscatelli F , AbrousDN, MassacrierAet al.: Disruption of the mouse Necdin gene results in hypothalmic and behavioral alterations reminiscent of the human Prader-Willi syndrome.Hum. Mol. Genet.9 , 3101–3110 (2000).
  • Li LL , KeverneEB, AparicioSet al.: Regulation of maternal behavior and offspring growth by paternally expressed Peg3.Science284 , 330–333 (1999).
  • Schaller F , WatrinF, SturneyRet al.: A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene.Hum. Mol. Genet.19 , 4895–4905 (2010).
  • Lefebvre L , VivilleS, BartonSCet al.: Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest.Nat. Genet.20 , 163–169 (1998).
  • Friedman ER , FanCM: Separate Necdin domains bind ARNT2 and HIF1α and repress transcription.Biochem. Biophys. Res. Commun.363 , 113–118 (2007).
  • Duplan SM , BoucherF, AlexandrovL, MichaudJL: Impact of Sim1 gene dosage on the development of the paraventricular and supraoptic nuclei of the hypothalamus.Eur. J. Neurosci.30 , 2239–2249 (2009).
  • Gultice AD , Kilkarni-DatarK, BrownTL: Hypoxia-inducible factor 1α (HIF1A) mediates distinct steps of rat trophoblast differentiation in gradient oxygen.Biol. Reprod.80 , 184–193 (2009).
  • Portmann-Lanz CB , SchoeberleinA, PortmannRet al.: Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes.Am. J. Obstet. Gynecol.202(3) , 294.e1–294.e11 (2010).
  • Dorus S , VallenderEJ, EvansPDet al.: Accelerated evolution of nervous system genes in the origin of Homo sapiens.Cell119 , 1027–1040 (2004).
  • Johnson MB , KawasawaYI, MasonCEet al.: Functional and evolutionary insights into human brain development through global transcriptome analysis.Neuron62 , 494–509 (2009).
  • Xu AG , HeL, LiZet al.: Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-Seq.PLOS Comp. Biol.6 , e1000843 (2010).
  • Pollard SK , SalamaSR, LamberNet al.: An RNA gene expressed during cortical development evolved rapidly in humans.Nature443 , 167–172 (2006).
  • Somel M , FranzH, YanZet al.: Transcriptional neoteny in the human brain.Proc. Natl. Acad. Sci. USA106 , 5743–5748 (2009).
  • Pennacchio LA , AhituvN, MosesAMet al.: In vivo enhancer analysis of human conserved non-coding sequences.Nature444 , 499–502 (2006).
  • Rakic P : Evolution of the neocortex: a perspective from developmental biology.Nat. Rev. Neuro.10 , 724–735 (2009).
  • Zecevic N , HuF, JakovcevskiI: Cortical interneurons in the developing human neocortex.Dev. Neurobiol.71 , 18–33 (2010).
  • Kang JQ , MacdonaldRL: Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies.Trends Mol. Med.15 , 430–438 (2009).
  • D‘Hulst C , KooyRF: The GABAA receptor: a novel target for treatment of fragile X?Trends Neurosci.30 , 425–431 (2007).
  • Costa E , DongE, GraysonDRet al.: Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability.Epigenetics2 , 29–36 (2007).
  • Eagleson KL , GravielleMC, Schlueter McFadyen-Ketchum LJ et al.: Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes. Neuroscience168 , 797–810 (2010).
  • Choa HT , ChenHL, SamacoRCet al.: Dysfunction in GABA signalling mediates autism-like sterotypies and Rett syndrome phenotypes.Nature468 , 263–269 (2010).
  • Cryan JF , SlatteryDA: GABAB receptors and depression. Current status.Adv. Pharmacol.58 , 427–451 (2010).
  • Brosh I , BarkaiE: Learning-induced enhancement of feedback inhibitory synaptic transmission.Learn. Mem.16 , 413–416 (2009).
  • Smith KS , TindellAJ, AldridgeJW, BerridgeKC: Ventral pallidum roles in reward and motivation.Behav. Brain Res.196 , 155–167 (2009).
  • Sernagor E , ChabrolF, BonyG, CanceddaL: GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems.Front. Cell Neurosci.4 , 11 (2010).
  • Wang DD , KriegsteinAR: Defining the role of GABA in cortical development.J. Physiol.587 , 1873–1879 (2009).
  • Kohl MM , PaulsenO: The roles of GABAB receptors in cortical network activity.Adv. Pharmacol.58 , 205–209 (2010).
  • Skene PJ , IllingworthRS, WebbSet al.: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state.Mol. Cell37 , 457–468 (2010).
  • Godde JS , UraK: Cracking the enigmatic linker histone code.J. Biochem.143 , 287–293 (2008).
  • Roberts DS , HuY, LundIV, Brooks-KayalAR, RussekSJ: Brain-derived neurotrophic factor (BDNF-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor α 4 subunits in hippocampal neurons.J. Biol. Chem.281 , 29431–29435 (2006).
  • Itaba-Matsumoto N , MaegawaS, YamagataHet al.: Imprinting status of paternally imprinted DLX5 gene in Japanese patients with Rett syndrome.Brain Dev.29 , 491–495 (2007).
  • Horike S , CaiS, MiyanoM, ChengM, Kohwi-ShigematsuT: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome.Nat. Genet.37 , 31–40 (2005).
  • Schule B , LiHH, Fisch-KohlC, PurmannC, FranckeU: DLX5 and DLX6 expression is biallelic and not modulated by MeCP2 deficiency.Am. J. Hum. Genet.81 , 492–506 (2007).
  • Kuwajima T , HasegawaK, YoshikawaK: Necdin promotes tangential migration of neocortical interneurons from basal forebrain.J. Neurosci.30 , 3709–3714 (2010).
  • Deng JV , RodriguizRM, HutchinsonANet al.: MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants.Nat. Neurosci.13 , 1128–1136 (2010).
  • Feng J , NestlerEJ: MeCp2 and drug addiction.Nat. Neurosci.13(9) , 1039–1041 (2010).
  • Haque FN , GottesmanII, WongAH: Not really identical: epigenetic differences in monozygotic twins and implications for twin studies in psychiatry.Am. J. Med. Genet. C Semin. Med. Genet.151C(2) , 136–141 (2009).
  • Ptak C , PetronisA: Epigenetic approaches to psychiatric disorders.Dialogues Clin. Neurosci.12 , 25–35 (2010).
  • Brodal A : Neurological Anatomy in Relation to Clinical Medicine (3rd Edition). Oxford University Press, NY, USA (1981)
  • Gregg C , ZhangC, WeissbourdBet al.: High-resolution analysis of parent-of-origin allelic expression in the mouse brain.Science329 , 643–648 (2010).
  • Gregg C , ZhangJ, ButlerJE, HaigD, DulacC: Sex-specific parent-of-origin allelic expression in the mouse brain.Science329 , 682–685 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.