549
Views
0
CrossRef citations to date
0
Altmetric
Review

Involvement of miRNA in Erythroid Differentiation

, , , , &
Pages 51-65 | Published online: 14 Feb 2012

References

  • He L , HannonGJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5 , 522–531 (2010).
  • Kozomara A , Griffiths-JonesS. miRBase: integrating microRNA annotation and deep-sequencing data. Nucl. Acids Res.39 , 152–157 (2010).
  • Krol J , LoedigeI, FilipowiczW. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet.11 , 597–610 (2010).
  • Sontheimer EJ , CarthewRW. Silence from within: endogenous siRNAs and miRNAs. Cell122 , 9–12 (2005).
  • Subramanian S , SteerCJ. microRNAs as gatekeepers of apoptosis. J. Cell Physiol.223 , 89–98 (2010).
  • Wang F , YuJ, YangGH, WangXS, ZhangJW. Regulation of erythroid differentiation by miR-376a and its targets. Cell Res.21(8) , 1196–1209 (2011).
  • Alvarez-Garcia I , MiskaEA. microRNA functions in animal development and human disease. Development132 , 4653–4662 (2005).
  • Taccioli C , FabbriE, VisoneR et al. UCbase & miRfunc: a database of ultraconserved sequences and microRNA function. Nucl. Acids Res. 37(Suppl. 1) , D41–D48 (2009).
  • Bracken CP , SzubertJM, MercerTR et al. Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucl. Acids Res. 39(13) , 5658–5668 (2011).
  • Huntzinger E , IzaurraldeE. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet.12 , 99–110 (2011).
  • van Rooij E . The art of microRNA research. Circ. Res. Rev.108(2) , 219–234 (2011).
  • Huang Y , ZouQ, SongH et al. A study of miRNAs targets prediction and experimental validation. Prot. Cell 1(11) , 979–986 (2010).
  • Bueno MJ , MalumbresM. microRNAs and the cell cycle. Biochim. Biophys. Acta1812(5) , 592–601 (2011).
  • Bayarsaihan D . Epigenetic mechanisms in inflammation. J. Dent. Res. Rev.90(1) , 9–17 (2011).
  • Zhang W , DolanME. The emerging role of microRNAs in drug responses. Curr. Opin. Mol. Ther. Rev.12(6) , 695–702 (2010).
  • Salminen A , OjalaJ, KaarnirantaK. Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell Mol. Life Sci. Rev. (6) , 1021–1031 (2011).
  • Metallo CM , AzarinSM, JiL, de Pablo JJ, Palecek SP. Engineering tissue from human embryonic stem cells. J. Cell Mol. Med.12(3) , 709–729 (2008).
  • Huang X , GschwengE, Van Handel B, Cheng D, Mikkola HK, Witte ON. Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood117(7) , 2157–2165 (2011).
  • Lozzio CB , LozzioBB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood45 , 321–334 (1975).
  • Mikami M , SadahiraY, HagaA, OtsukiT, WadaH, SugiharaT. Hypoxia-inducible factor-1 drives the motility of the erythroid progenitor cell line, UT-7/Epo, via autocrine motility factor. Exp. Hematol.33(5) , 531–541 (2005).
  • Sangokoya C , TelenMJ, ChiJT. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood116(20) , 4338–4348 (2010).
  • Yang GH , WangF, YuJ, WangXS, YuanJY, ZhangJW. microRNAs are involved in erythroid differentiation control. J. Cell Biochem.107(3) , 548–556 (2009).
  • Bruchova-Votavova H , YoonD, PrchalJT. miR-451 enhances erythroid differentiation in K562 cells. Leuk. Lymphoma51(4) , 686–693 (2010).
  • Bianchi N , ZuccatoC, LamprontiI, BorgattiM, GambariR. Expression of miR-210 during erythroid differentiation and induction of γ-globin gene expression. BMB Rep.42(8) , 493–499 (2009).
  • Gambari R , FibachE. Medicinal chemistry of fetal hemoglobin inducers for treatment of β-thalassemia. Curr. Med. Chem. Rev.14(2) , 199–212 (2007).
  • Rutherford TR , CleggJB, WeatherallDJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature280(5718) , 164–165 (1979).
  • Wanda PE , WalkerMM. Hemoglobin induction by Ara-C in human erythroleukemic cells (K562) is cell-cycle dependent. Leuk. Res.13(8) , 683–688 (1989).
  • Witt O , SandK, PekrunA. Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood95(7) , 2391–2396 (2000).
  • Lampronti I , BianchiN, BorgattiM, FibachE, PrusE, GambariR. Accumulation of γ-globin mRNA in human erythroid cells treated with angelicin. Eur. J. Haematol.71(3) , 189–195 (2003).
  • Bianchi N , OstiF, RutiglianoC et al. The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br. J. Haematol. 104(2) , 258–265 (1999).
  • Bianchi N , ChiarabelliC, BorgattiM, MischiatiC, FibachE, GambariR. Accumulation of γ-globin mRNA and induction of erythroid differentiation after treatment of human leukaemic K562 cells with tallimustine. Br. J. Haematol.113(4) , 951–961 (2001).
  • Bianchi N , OngaroF, ChiarabelliC et al. Induction of erythroid differentiation of human K562 cells by cisplatin analogs. Biochem. Pharmacol. 60(1) , 31–40 (2000).
  • Alter BP , GoffSC. Electrophoretic separation of human embryonic globin demonstrates ’α-thalassemia‘ in human leukemia cell line K562. Biochem. Biophys. Res. Commun.94(3) , 843–848 (1980).
  • Pope SH , FibachE, SunJ, ChinK, RodgersGP. Two-phase liquid culture system models normal human adult erythropoiesis at the molecular level. Eur. J. Haematol.64(5) , 292–303 (2000).
  • Fibach E , BianchiN, BorgattiM, PrusE, GambariR. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood102 , 1276–1281 (2003).
  • Liakopoulou E , LiQ, StamatoyannopoulosG. Induction of fetal hemoglobin by propionic and butyric acid derivatives: correlations between chemical structure and potency of Hb F induction. Blood Cells Mol. Dis.29(1) , 48–56 (2002).
  • Fibach E , KolliaP, SchechterAN, NoguchiCT, RodgersGP. Hemin-induced acceleration of hemoglobin production in immature cultured erythroid cells: preferential enhancement of fetal hemoglobin. Blood85(10) , 2967–2974 (2005).
  • Amoyal I , FibachE. Hemoglobin switch in the newborn: a flow cytometry analysis Neonatology1 , 61–68 (2007).
  • Johnson J , HunterR, McElveenR, QianXH, BaligaBS, PaceBS. Fetal hemoglobin induction by the histone deacetylase inhibitor, scriptaid. Cell Mol. Biol.51(2) , 229–238 (2005).
  • Rhodes J , HagenA, HsuK et al. Interplay of pu.1 and GATA1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev. Cell 8(1) , 97–108 (2005).
  • Galloway JL , WingertRA, ThisseC, ThisseB, ZonLI. Loss of GATA1 but not GATA2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev. Cell8(1) , 109–116 (2005).
  • Schier AF , GiraldezAJ. microRNA function and mechanism: insights from zebra fish. Cold Spring Harb. Symp. Quant. Biol.71 , 195–203 (2006).
  • Dong M , FuYF, DuTT et al. Heritable and lineage-specific gene knockdown in zebrafish embryo. PLoS ONE 4(7) , e6125 (2009).
  • Grabher C , PayneEM, JohnstonAB et al. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 25(3) , 506–514 (2011).
  • Dore LC , AmigoJD, Dos Santos CO et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl Acad. Sci. USA105(9) , 3333–3338 (2008).
  • Du TT , FuYF, DongM et al. Experimental validation and complexity of miRNA–mRNA target interaction during zebrafish primitive erythropoiesis. Biochem. Biophys. Res. Commun. 381(4) , 688–693 (2009).
  • Pase L , LaytonJE, KloostermanWP, CarradiceD, WaterhousePM, LieschkeGJ. miR-451 regulates zebrafish erythroid maturation in vivo via its target GATA2. Blood113(8) , 1794–1804 (2009).
  • Yu D , dos Santos CO, Zhao G et al. miR-451 protects against erythroid oxidant stress by repressing 14–3–3ζ. Genes Dev.24(15) , 1620–1633 (2010).
  • Fu YF , DuTT, DongM et al. Mir-144 selectively regulates embryonic α-hemoglobin synthesis during primitive erythropoiesis. Blood 113(6) , 1340–1349 (2009).
  • Kosaka N , SugiuraK, YamamotoY et al. Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br. J. Haematol. 142 , 293–300 (2008).
  • Sankaran VG , MenneTF, ŠćepanovićD, et al. microRNA-15a and -16–1 act via Myb to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl Acad. Sci. USA108(4) , 1519–1524 (2011).
  • Gabbianelli M , TestaU, MorsilliO et al. Mechanism of human Hb switching: a possible role of the kit receptor/miR 221–222 complex. Haematologica 95(8) , 1253–1260 (2010).
  • Felli N , PediniF, RomaniaP et al. microRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94(4) , 479–486 (2009).
  • Zhang L , FlygareJ, WongP, LimB, LodishHF. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev.25(2) , 119–124 (2011).
  • Svasti S , MasakiS, PenglongT et al. Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann. Hematol. 89(10) , 953–958 (2010).
  • Felli N , FontanaL, PelosiE et al. microRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA 102 , 8081–8086 (2005).
  • Choong ML , YangHH, McNieceI. microRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol.35 , 551–564 (2007).
  • Georgantas RW 3rd, Hildreth R, Morisot S et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl Acad. Sci. USA104 , 2750–2755 (2007).
  • Kulshreshtha R , DavuluriRV, CalinGA, IvanM. A microRNA component of the hypoxic response. Cell Death Differ.15 , 667–671 (2008).
  • Fasanaro P , D‘AlessandraY, Di Stefano V et al. microRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem.283 , 15878–15883 (2008).
  • Rogers HM , YuX, WenJ, SmithR, FibachE, NoguchCT. Hypoxia alters progression of the erythroid program. Exp. Hematol.36(1) , 17–27 (2008).
  • Alter BP . Fetal erythropoiesis in stress hematopoiesis. Exp. Hematol.7 , 200–209 (1979).
  • Dixit A , ChatterjeeTC, MishraP et al. Hydroxyurea in thalassemia intermedia – a promising therapy. Ann. Hematol. 84(7) , 441–446 (2005).
  • Watanapokasin Y , ChuncharuneeS, SanmundD et al. In vivo and in vitro studies of fetal hemoglobin induction by hydroxyurea in β-thalassemia/hemoglobin E patients. Exp. Hematol.33(12) , 1486–1492 (2005).
  • Xu XS , HongX, WangG. Induction of endogenous γ-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J. Hematol. Oncol.2 , 15 (2009).
  • Jiang J , BestS, MenzelS et al. cMyb is involved in the regulation of fetal hemoglobin production in adults. Blood 108(3) , 1077–1083 (2006).
  • Sankaran VG , XuJ, OrkinSH. Transcriptional silencing of fetal hemoglobin by BCL11A. Ann. NY Acad. Sci.1202 , 64–68 (2010).
  • Satta S , PerseuL, MoiP et al. Compound heterozygosity for KLF1 mutations associated with remarkable increase of fetal hemoglobin and red cell protoporphyrin. Haematologica 96(5) , 767–770 (2011).
  • Zhou D , LiuK, SunCW, PawlikKM, TownesTM. KLF1 regulates BCL11A expression and γ- to β-globin gene switching. Nat. Genet.42(9) , 742–744 (2010).
  • Borg J , PapadopoulosP, GeorgitsiM et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat. Genet. 42(9) , 801–805 (2010).
  • Woon Kim Y , KimS, Geun Kim C, Kim A. The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes. Nucl. Acids Res.39(16) , 6944–6955 (2011).
  • Yao X , KodeboyinaS, LiuL et al. Role of STAT3 and GATA-1 interactions in γ-globin gene expression. Exp. Hematol. 37(8) , 889–900 (2009).
  • Bauer DE , OrkinSH. Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr. Opin. Pediatr.23(1) , 1–8 (2011).
  • Sankaran VG , NathanDG. Reversing the hemoglobin switch. N. Engl. J. Med.363(23) , 2258–2260 (2010).
  • Ji P , YehV, RamirezT, Murata-HoriM, LodishHF. Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica95(12) , 2013–2021 (2010).
  • Mack GS . MicroRNA gets down to business. Nat. Biotechnol.25(6) , 631–638 (2007).
  • Wilber A , HargrovePW, KimYS et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood 117(10) , 2817–2826 (2011).
  • Watanapokasin R , SanmundD, WinichagoonP, MutaK, FucharoenS. Hydroxyurea responses and fetal hemoglobin induction in β-thalassemia/HbE patients‘ peripheral blood erythroid cell culture. Ann. Hematol.85(3) , 164–169 (2006).
  • Cao H . Pharmacological induction of fetal hemoglobin synthesis using histone deacetylase inhibitors. Hematology9(3) , 223–233 (2004).
  • Zuo Z , CalinGA, de Paula HM et al. Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood118(2) , 413–415 (2011).
  • Corthals SL , Jongen-LavrencicM, de Knegt Y et al. micro-RNA-15a and micro-RNA-16 expression and chromosome 13 deletions in multiple myeloma. Leuk. Res.34(5) , 677–681 (2010).
  • Bhattacharya R , NicolosoM, ArvizoR et al. miR-15a and miR-16 control Bmi-1 expression in ovarian cancer. Cancer Res. 69(23) , 9090–9095 (2009).

▪ Patents

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.