384
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Global DNA Methylation Levels are Modulated by Mitochondrial DNA Variants

, , , &
Pages 17-27 | Published online: 14 Feb 2012

References

  • Kowaltowski AJ , de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic. Biol. Med.47(4) , 333–343 (2009).
  • Circu ML , AwTY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med.48(6) , 749–762 (2010).
  • Wallace DC . Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutag.51(5) , 440–450 (2010).
  • Torroni A , HuoponenK, FrancalacciP et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144(4) , 1835–1850 (1996).
  • Achilli A , RengoC, MagriC et al. The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool. Am. J. Hum. Genet. 75(5) , 910–918 (2004).
  • Cann RL , StonekingM, WilsonAC. Mitochondrial DNA and human evolution. Nature325(6099) , 31–36 (1987).
  • Torroni A , WallaceDC. Mitochondrial DNA variation in human populations and implications for detection of mitochondrial DNA mutations of pathological significance. Bioenerg. Biomembr.26(3) , 261–271 (1994).
  • Torroni A , AchilliA, MacaulayV, RichardsM, BandeltHJ. Harvesting the fruit of the human mtDNA tree. Trends Genet.22(6) , 339–345 (2006).
  • Torroni A , PetrozziM, D‘UrbanoL et al. Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am. J. Hum. Genet. 60(5) , 1107–1121 (1997).
  • De Benedictis G , RoseG, CarrieriG et al. Mitochondrial DNA variants are associated with successful aging and longevity in humans. FASEB J. 13(12) , 1532–1536 (1999).
  • Ruiz-Pesini E , LapeñaAC, Díez-SánchezC et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet. 67(3) , 682–696 (2000).
  • Santoro A , SalvioliS, RauleN et al. Mitochondrial DNA involvement in human longevity. Biochim. Biophys. Acta 1757(9–10) , 1388–1399 (2006).
  • Khusnutdinova E , GilyazovaI, Ruiz-PesiniE et al. A mitochondrial etiology of neurodegenerative diseases. Evidence from Parkinson‘s disease. Ann. NY Acad. Sci. 1147 , 1–20 (2008).
  • Nishigaki Y , FukuN, TanakaM. Mitochondrial haplogroups associated with lifestyle-related diseases and longevity in the Japanese population. Geriatr. Gerontol. Int.10(Suppl. 1) , S221–S235 (2010).
  • Moore AZ , BiggsML, MatteiniA et al. Polymorphisms in the mitochondrial DNA control region and frailty in older adults. PLoS ONE 5(6) , e11069 (2010).
  • Fang H , ShenL, ChenT et al. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 10 , 421 (2010).
  • Takasaki S . Mitochondrial haplogroups associated with Japanese centenarians, Alzheimer‘s patients, Parkinson‘s patients, Type 2 diabetic patients and healthy non-obese young males. J. Genet. Genomics36(7) , 425–434 (2009).
  • Dato S , PassarinoG, RoseG et al. Association of the mitochondrial DNA haplogroup J with longevity is population specific. Eur. J. Hum. Genet. 12(12) , 1080–1082 (2004).
  • Pereira L , GonçalvesJ, Franco-DuarteR et al. No evidence for an mtDNA role in sperm motility: data from complete sequencing of asthenozoospermic males. Mol. Biol. Evol. 24(3) , 868–874 (2007).
  • Mancuso M , KiferleL, PetrozziL et al. Mitochondrial DNA haplogroups do not influence the Huntington‘s disease phenotype. Neurosci. Lett. 444 , 83–86 (2008).
  • Rose G , LongoT, MalettaR et al. No evidence of association between frontotemporal dementia and major European mtDNA haplogroups. Eur. J. Neurol. 15(9) , 1006–1008 (2008).
  • Mancuso M , CalsolaroV, OrsucciD, SicilianoG, MurriL. Is there a primary role of the mitochondrial genome in Alzheimer‘s disease? J. Bioenerg. Biomembr.41(5) , 411–416 (2009).
  • Pello R , MartínMA, CarelliV et al. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum. Mol. Genet. 17(24) , 4001–4011(2008).
  • Marcuello A , Martínez-RedondoD, DahmaniY et al. Human mitochondrial variants influence on oxygen consumption. Mitochondrion 9(1) , 27–30 (2009).
  • Martínez-Redondo D , MarcuelloA, CasajúsJA et al. Human mitochondrial haplogroup H: the highest VO2max consumer – is it a paradox? Mitochondrion 10(2) , 102–107 (2010).
  • Hinttala R , KervinenM, UusimaaJ et al. Analysis of functional consequences of haplogroup J polymorphisms m.4216T>C and m.3866T>C in human MT-ND1: mutagenesis of homologous positions in Escherichia coli. Mitochondrion 10(4) , 358–361 (2010).
  • Gil Borlado MC , Moreno Lastres D, Gonzalez Hoyuela M et al. Impact of the mitochondrial genetic background in complex III deficiency. PLoS ONE5(9) , e12801 (2010).
  • Gómez-Durán A , Pacheu-GrauD, López-GallardoE et al. Unmasking the causes of multifactorial disorders. OXPHOS differences between mitochondrial haplogroups. Hum. Mol. Genet. 19(17) , 3343–3353 (2010).
  • Arning L , HaghikiaA, Taherzadeh-FardE et al. Mitochondrial haplogroup H correlates with ATP levels and age at onset in Huntington disease. J. Mol. Med. Berl. 88(4) , 431–436 (2010).
  • Tranah GJ , ManiniTM, LohmanKK et al. Mitochondrial DNA variation in human metabolic rate and energy expenditure. Mitochondrion 11(6) , 855–861 (2011).
  • Carelli V , VerganiL, BernazziB et al. Respiratory function in cybrid cell lines carrying European mtDNA haplogroups: implications for Leber‘s hereditary optic neuropathy. Biochim. Biophys. Acta 1588(1) , 7–14 (2002).
  • Moreno-Loshuertos R , Acín-PérezR, Fernández-SilvaP et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat. Genet. 38(11) , 1261–1268 (2006).
  • Mishmar D , Ruiz-PesiniE, GolikP et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100(1) , 171–176 (2003).
  • Ruiz-Pesini E , WallaceDC. Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Hum. Mutat.27(11) , 1072–1081 (2006).
  • Elson JL , TurnbullDM, TaylorRW. Testing the adaptive selection of human mtDNA haplogroups: an experimental bioenergetics approach. Biochem. J.404(2) , e3–e5 (2007).
  • King MP , AttardiG. Human cells lacking mtDNA. Repopulation with exogenous mitochondria by complementation. Science246(4929) , 500–503 (1989).
  • Chomyn A . Platelet-mediated transformation of human mitochondrial DNA-less cells. Methods Enzymol.264 , 334–339 (1996).
  • Johnson KR , ZhengQY, BykhovskayaY, SpirinaO, Fischel-GhodsianN. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat. Genet.27(2) , 191–194 (2001).
  • Vives-Bauza C , PonzaloR, ManfrediG, Garcia-ArumiE, AndreiAL. Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA. Neurosci. Lett.391(3) , 136–141 (2006).
  • Bellizzi D , CavalcanteP, TavernaD et al. Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines. Genes Cells 11(8) , 883–891 (2006).
  • Kazuno AA , MunakataK, TanakaM, KatoN, KatoT. Relationships between mitochondrial DNA subhaplogroups and intracellular calcium dynamics. Mitochondrion8(2) , 164–169 (2008).
  • Bellizzi D , TavernaD, D‘AquilaP, De Blasi S, De Benedictis G. Mitochondrial DNA variability modulates mRNA and intra-mitochondrial protein levels of HSP60 and HSP75. Experimental evidence from cybrid lines. Cell Stress Chaperones14(3) , 265–271 (2009).
  • Finley LW , HaigisMC. The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res. Rev.8(3) , 173–188 (2009).
  • Hwang S , KwakSH, BhakJ et al. Gene expression pattern in transmitochondrial cytoplasmic hybrid cells harboring Type 2 diabetes-associated mitochondrial DNA haplogroups. PLoS ONE 6(7) , e22116 (2011).
  • Amo T , YadavaN, OhR et al. Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene 411(1–2) , 69–76 (2008).
  • Pajares MA , DuránC, CorralesF, PliegoMM, MatoJM. Modulation of rat liver S-adenosylmethionine synthetase activity by glutathione. J. Biol. Chem.267(25) , 17598–17605 (1992).
  • Avila MA , CorralesFJ, RuizF et al. Specific interaction of methionine adenosyltransferase with free radicals. Biofactors 8(1–2) , 27–32 (1998).
  • Naviaux RK . Mitochondrial control of epigenetics. Cancer Biol. Ther.7(8) , 1191–1193 (2008).
  • Wallace DC . Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution. Cold Spring Harb. Quant. Biol.74 , 383–393 (2009).
  • Wallace DC , FanW. Energetics, epigenetics, mitochondrial genetics. Mitochondrion10(1) , 12–31 (2010).
  • Turk PW , LaayounA, SmithSS, WeitzmanSA. DNA adduct 8-hydroxyl-2´-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis16(5) , 1253–1255 (1995).
  • Valinluck V , TsaiHH, RogstadDK et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32(14) , 4100–4108 (2004).
  • Wallace DC . Bioenergetics and the epigenome. interface between the environment and genes in common diseases. Dev. Disabil. Res. Rev.16(2) , 114–119 (2010).
  • Smiraglia DJ , KulawiecM, BistulfiGL, GuptaSG, SinghKK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol. Ther.7(8) , 1182–1190 (2008).
  • Ling C , PoulsenP, SimonssonS et al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J. Clin. Invest. 117(11) , 3427–3435 (2007).
  • De Rango F , MontesantoA, BerardelliM et al. To grow old in southern Italy: a comprehensive description of the old and oldest old in Calabria. Gerontology 57(4) , 327–334 (2011).
  • Anisowicz A , HuangH, BraunschweigerKI et al. A high-throughput and sensitive method to measure global DNA methylation: application in lung cancer. BMC Cancer 8 , 222 (2008).
  • Agresti A , WackerlyD, Boyett et al. Conditional tests for cross-classifications: approximation of attained significance levels. Psychometrika44 , 75–83 (1979).
  • Bellizzi D , D‘AquilaP, MontesantoA et al. Global DNA methylation in old subjects is correlated with frailty. Age doi:10.1007/s11357–011–9216–6 (2011) (Epub ahead of print).
  • Ryan MT , HoogenraadNJ. Mitochondrial-nuclear communications. Annu. Rev. Biochem.76 , 701–722 (2007).
  • Cannino G , Di Liegro CM, Rinaldi AM. Nuclear-mitochondrial interaction. Mitochondrion7(6) , 359–366 (2007).
  • Jazwinski SM . The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging. Gene354 , 22–27 (2005).
  • Houshmand M , SanatiMH, BabrzadehF et al. Population screening for association of mitochondrial haplogroups BM, J, K and M with multiple sclerosis: interrelation between haplogroup J and MS in Persian patients. Mult. Scler. 11(6) , 728–730 (2005).
  • Carelli V , AchilliA, ValentinoML et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am. J. Hum. Genet. 78 , 564–574 (2006).
  • Hudson G , CarelliV, SpruijtL et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am. J. Hum. Genet. 81(2) , 228–233 (2007).
  • Ghelli A , PorcelliAM, ZannaC et al. The background of mitochondrial DNA haplogroup J increases the sensitivity of Leber‘s hereditary optic neuropathy cells to 2,5-hexanedione toxicity. PLoS ONE 4(11) , e7922 (2009).
  • Ruiz-Pesini E , MishmarD, BrandonM, ProcaccioV, WallaceDC. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science303(5655) , 223–226 (2004).
  • Chinnery PF , MowbrayC, PatelSK et al. Mitochondrial DNA haplogroups and Type 2 diabetes: a study of 897 cases and 1010 controls. J. Med. Genet. 44(6) , e80 (2007).
  • Domínguez-Garrido E , Martínez-RedondoD, Martín-RuizC et al. Association of mitochondrial haplogroup J and mtDNA oxidative damage in two different North Spain elderly populations. Biogerontology 10(4) , 435–442 (2009).
  • Passarino G , RoseG, BellizziD. Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology11(5) , 575–588 (2010).
  • Torres L , AvilaMA, CarreteroMV et al. Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation. FASEB J. 14(1) , 95–102 (2000).
  • Tomasi ML , LiTW, LiM, MatoJM, LuSC. Inhibition of human methionine adenosyltransferase 1A transcription by coding region methylation. J. Cell Physiol.227(4) , 1583–1591 (2011).
  • Hargreaves DC , CrabtreeGR. ATP-dependent chromatin remodeling. Genetics, genomics and mechanisms. Cell Res.21(3) , 396–420 (2011).
  • Zeng Z , HuangZZ, ChenC, YangH, MaoZ, LuSC. Cloning and functional characterization of the 5´-flanking region of human methionine adenosyltransferase 1A gene. Biochem. J.346 , 475–482 (2000).
  • Lee J , SharmaS, KimJ, FerranteRJ, RyuH. Mitochondrial nuclear receptors and transcription factors. who‘s minding the cell? J. Neurosci. Res.86(5) , 961–971 (2008).
  • Miceli MW , JazwinskiSM. Common and cell type-specific responses of human cells to mitochondrial dysfunction. Exp. Cell Res.302(2) , 270–280 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.