123
Views
0
CrossRef citations to date
0
Altmetric
Review

Impact of Foreign DNA Integration on Tumor Biology and on Evolution via Epigenetic Alterations

Pages 41-49 | Published online: 14 Feb 2012

References

  • Doerfler W . The fate of the DNA of adenovirus type 12 in baby hamster kidney cells. Proc. Natl Acad. Sci. USA60 , 636–643 (1968).
  • Sutter D , WestphalM, DoerflerW. Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. Cell14 , 569–585 (1978).
  • Doerfler W , GahlmannR, StabelS et al. On the mechanism of recombination between adenoviral and cellular DNAs: the structure of junction sites. Curr. Topics Microbiol. Immunol. 109 , 193–228 (1983).
  • Knoblauch M , SchröerJ, SchmitzB, DoerflerW. The structure of adenovirus type 12 DNA integration sites in the hamster cell genome. J. Virol.70 , 3788–3796, (1996).
  • Hochstein N , MuiznieksI, MangelL, BrondkeH, DoerflerW. The epigenetic status of an adenovirus transgenome upon long-term cultivation in hamster cells. J. Virol.81 , 5349–5361 (2007).
  • Doerfler W . Epigenetic mechanisms in human adenovirus type 12 oncogenesis. Semin. Cancer Biol.19 , 136–143 (2009).
  • Hohlweg U , HöselM, DornA et al. Intraperitoneal dissemination of Ad12-induced undifferentiated neuroectodermal hamster tumors: de novo methylation and transcription patterns of integrated viral and of cellular genes. Virus Res. 98 , 45–56 (2003).
  • Sutter D , DoerflerW. Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc. Natl Acad. Sci. USA77 , 253–256 (1980).
  • Doerfler W . Epigenetic consequences of foreign DNA integration: Global alterations of methylation and transcription patterns in recipient genomes. Rev. Med. Virol.21 , 336–346 (2011).
  • Doerfler W . In pursuit of the first recognized epigenetic signal: DNA methylation. Epigenetics3 , 125–133 (2008).
  • Günthert U , SchweigerM, StuppM, DoerflerW. DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Proc. Natl Acad. Sci. USA73 , 3923–3927 (1976).
  • Orend G , KnoblauchM, KämmerC, et al. The initiation of de novo methylation of foreign DNA integrated into a mammalian genome is not exclusively targeted by nucleotide sequence. J. Virol.69 , 1226–1242 (1995).
  • Toth M , LichtenbergU, DoerflerW. Genomic sequencing reveals a 5-methylcytosine-free domain in active promoters and the spreading of preimposed methylation patterns. Proc. Natl Acad. Sci. USA86 , 3728–3732 (1989).
  • Vardimon L , NeumannR, KuhlmannI, SutterD, DoerflerW. DNA methylation and viral gene expression in adenovirus-transformed and -infected cells. Nucleic Acids Res.8 , 2461–2473 (1980).
  • Vardimon L , KressmannA, CedarH, MaechlerM, DoerflerW. Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc. Natl Acad. Sci. USA79 , 1073–1077 (1982).
  • Kruczek I , DoerflerW. Expression of the chloramphenicol acetyltransferase gene in mammalian cells under the control of adenovirus type 12 promoters: effect of promoter methylation on gene expression. Proc. Natl Acad. Sci. USA80 , 7586–7590 (1983).
  • Langner KD , VardimonL, RenzL, DoerflerW. DNA methylation of three 5´ C-C-G-G 3´ sites in the promoter and 5´ region inactivates the E2a gene of adenovirus type 2. Proc. Natl. Acad. Sci. USA81 , 2950–2954 (1984).
  • Doerfler W . DNA methylation and gene activity. Annu. Rev. Biochem.52 , 93–124 (1983).
  • Langner KD , WeyerU, DoerflerW. Trans effect of the E1 region of adenoviruses on the expression of a prokaryotic gene in mammalian cells: resistance to 5´-CCGG-3´ methylation. Proc. Natl. Acad. Sci. USA83 , 1598–1602 (1986).
  • Weisshaar B , LangnerKD, JüttermannR et al. Reactivation of the methylation-inactivated late E2A promoter of adenovirus type 2 by E1A (13S) functions. J. Mol. Biol. 202 , 255–270 (1988).
  • Knebel-Mörsdorf D , AchtenS, LangnerKD, RügerR, FleckensteinB, DoerflerW. Reactivation of the methylation-inhibited late E2A promoter of adenovirus type 2 by a strong enhancer of human cytomegalovirus. Virology166 , 166–174 (1988).
  • Hertz J , SchellG, DoerflerW. Factors affecting de novo methylation of foreign DNA in mouse embryonic stem cells. J. Biol. Chem.274 , 24232–24240 (1999).
  • Jurkowska RZ , CeccaldiA, ZhangY, ArimondoPB, JeltschA. DNA methyltransferase assays. Methods Mol. Biol.791 , 157–177 (2011).
  • Heller H , KämmerC, WilgenbusP, DoerflerW. Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc. Natl Acad. Sci. USA92 , 5515–5519 (1995).
  • Remus R , KämmerC, HellerH, SchmitzB, SchellG, DoerflerW. Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences. J. Virol.73 , 1010–1022 (1999).
  • Müller K , HellerH, DoerflerW. Foreign DNA integration. Genome-wide perturbations of methylation and transcription in the recipient genomes. J. Biol. Chem.276 , 14271–14278 (2001).
  • Doerfler W . The insertion of foreign DNA into mammalian genomes and its consequences: a concept in oncogenesis. Adv. Cancer Res.66 , 313–344 (1995).
  • Doerfler W . A new concept in (adenoviral) oncogenesis: integration of foreign DNA and its consequences. BBA Rev. Cancer1288 , F79–F99 (1996).
  • Kochanek S , TothM, DehmelA, RenzD, DoerflerW. Interindividual concordance of methylation profiles in human genes for tumor necrosis factors α and ß. Proc. Natl Acad. Sci. USA87 , 8830–8834 (1990).
  • Kochanek S , RadbruchA, TeschH, RenzD, DoerflerW. DNA methylation profiles in the human genes for tumor necrosis factors α and β in subpopulations of leukocytes and in leukemias. Proc. Natl Acad. Sci. USA88 , 5759–5763 (1991).
  • Naumann A , HochsteinN, WeberS, FanningE, DoerflerW. A distinct DNA methylation boundary in the 5´-upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome. Amer. J. Hum. Genet.85 , 606–616 (2009).
  • Hilger-Eversheim K , DoerflerW. Clonal origin of adenovirus type 12-induced hamster tumors: nonspecific chromosomal integration sites of viral DNA. Cancer Res.57 , 3001–3009 (1997).
  • Pipas JM . SV40: Cell transformation and tumorigenesis. Virology384 , 294–303 (2009).
  • Skalka AM , KatzRA. Retroviral DNA integration and the DNA damage response. Cell Death Differ.1 , 971–978 (2005).
  • Pett M , ColemanN. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J. Pathol.212 , 356–367 (2007).
  • Neuveut C , WeiY, BuendiaMA. Mechanisms of HBV-related hepatocarcino-genesis. J. Hepatol.52 , 594–604 (2010).
  • Lander ES , LintonLM, BirrenB et al. Initial sequencing and analysis of the human genome. Nature 409 , 860–921 (2001).
  • Strohl WA , RabsonAS, RouseH. Adenovirus tumorigenesis: role of the viral genome in determining tumor morphology. Science156 , 1631–1633 (1967).
  • Stabel S , DoerflerW, FriisRR. Integration sites of adenovirus type 12 DNA in transformed hamster cells and hamster tumor cells. J. Virol.36 , 22–40 (1980).
  • Schröer J , HölkerI, DoerflerW. Adenovirus type 12 DNA firmly associates with mammalian chromosomes early after virus infection or after DNA transfer by the addition of DNA to the cell culture medium. J. Virol.71 , 7923–7932 (1997).
  • Kuff EL , LuedersKK. The intracisternal A-particle gene family: structure and functional aspects. Adv. Cancer Res.51 , 183–276 (1988).
  • Meyer zu Altenschildesche G , HellerH, WilgenbusP, TjiaST, DoerflerW. Chromosomal distribution of the hamster intracisternal A-particle (IAP) retrotransposons. Chromosoma104 , 341–344 (1996).
  • Doerfler W . Nonproductive infection of baby hamster kidney cells (BHK21) with adenovirus type 12. Virology38 , 587–606 (1969).
  • Hochstein N , WebbD, HöselM, SeidelW, AuerochsS, DoerflerW. Human CAR gene expression in non-permissive hamster cells boosts entry of type 12 adenovirions and nuclear import of viral DNA. J.Virol.82 , 4159–4163 (2008).
  • Groneberg J , SutterD, SobollH, DoerflerW. Morphological revertants of adenovirus type 12-transformed hamster cells. J. Gen. Virol.40 , 635–645 (1978).
  • Frommer M , McDonaldLE, MillarDS et al. A genomic sequencing method that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. 89 , 1827–1831 (1992).
  • Clark SJ , HarrisonJ, PaulCL, FrommerM. High sensitivity mapping of methylated cytosines. Nucl. Acids Res.22 , 2990–2997 (1994).
  • Ushijima T , MorimuraK, HosoyaY et al. Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors. Proc. Natl Acad. Sci. USA 94 , 2284–2289 (1997).
  • Yang L , LinC, RosenfeldMG. A lincRNA switch for embryonic stem cell fate. Cell Res.21(12) , 1646–1648 (2011).
  • Schubbert R , RenzD, SchmitzB, DoerflerW. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl. Acad. Sci. USA94 , 961–966 (1997).
  • Grafodatskaya D , ChoufaniS, FerreiraJC et al. EBV transformation and cell culturing destabilizes DNA methylation in human lymphoblastoid cell lines. Genomics 95 , 73–83 (2010).
  • Alberter B , VogelB, LengenfelderD, FullF, EnsserA. Genome-wide histone acetylation profiling of Herpesvirus saimiri in human T cells upon induction with a histone deacetylase inhibitor. J. Virol.85 , 5456–5464, (2011).
  • Leonard S , WeiW, AndertonJ et al. Epigenetic and transcriptional changes which follow Epstein–Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin‘s lymphoma. J. Virol. 85 , 9568–9577 (2011).
  • Ohno S . Evolution by Gene Duplication. Springer Verlag Berlin Heidelberg, NY, USA (1970).
  • Ohno S . Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Sem. Cell. Dev. Biol.10 , 517–522 (1999).
  • Brosius J . Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica107 , 209–238 (1999).
  • Kidwell MG , LischDR. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int. J. Org. Evol.55 , 1–24 (2001).
  • Bowen NJ , JordanIK. Transposable elements and the evolution of eukaryotic complexity. Curr. Issues Mol. Biol.4 , 65–76 (2002).
  • Kazazian HH . Mobile elements: drivers of genome evolution. Science303 , 1626–1632 (2004).
  • Medstrand P , van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL. Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet. Genome Res.110 , 342–352 (2005).
  • Moyes D , GriffithsDJ, VenablesPJ. Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet.23 , 326–333 (2007).
  • Romanish MT , CohenCJ, MagerDL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Sem. Cancer Biol.20 , 246–253 (2010).
  • Rebollo R , KarimiMM, BilenkyM et al. Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet. 7(9) , e1002301 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.