5,853
Views
0
CrossRef citations to date
0
Altmetric
Review

Chromatin Insulator Elements: Establishing Barriers to Set Heterochromatin Boundaries

&
Pages 67-80 | Published online: 14 Feb 2012

References

  • Adolph KW . Organization of chromosomes in mitotic HeLa cells. Exp. Cell Res.125(1) , 95–103 (1980).
  • Belmont AS , BraunfeldMB, SedatJW, AgardDA. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma98(2) , 129–143 (1989).
  • Benyajati C , WorcelA. Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell9(3) , 393–407 (1976).
  • Marsden MP , LaemmliUK. Metaphase chromosome structure. evidence for a radial loop model. Cell17(4) , 849–858 (1979).
  • Rattner JB , LinCC. Radial loops and helical coils coexist in metaphase chromosomes. Cell42(1) , 291–296 (1985).
  • Stalder J , LarsenA, EngelJD, DolanM, GroudineM, WeintraubH. Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell20(2) , 451–460 (1980).
  • Hawkins RD , HonGC, RenB. Next-generation genomics. an integrative approach. Nat. Rev. Genet.11(7) , 476–486 (2010).
  • Beisel C , ParoR. Silencing chromatin. comparing modes and mechanisms. Nat. Rev. Genet.12(2) , 123–135 (2011).
  • Pauler FM , SloaneMA, HuangR et al. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res. 19(2) , 221–233 (2009).
  • Thurman RE , DayN, NobleWS, StamatoyannopoulosJA. Identification of higher-order functional domains in the human ENCODE regions. Genome Res.17(6) , 917–927 (2007).
  • Filion GJ , van Bemmel JG, Braunschweig U et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell143(2) , 212–224 (2010).
  • Kharchenko PV , AlekseyenkoAA, SchwartzYB et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471(7339) , 480–485 (2011).
  • Riddle NC , MinodaA, KharchenkoPV et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 21(2) , 147–163 (2011).
  • Bernatavichute YV , ZhangX, CokusS, PellegriniM, JacobsenSE. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE3(9) , e3156 (2008).
  • Turck F , RoudierF, FarronaS et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet.3(6) , e86 (2007).
  • Zhang X , ClarenzO, CokusS et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5(5) , e129 (2007).
  • Gerstein MB , LuZJ, van Nostrand EL et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science330(6012) , 1775–1787 (2010).
  • Liu T , RechtsteinerA, EgelhoferTA et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21(2) , 227–236 (2011).
  • Hawkins RD , HonGC, LeeLK et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6(5) , 479–491 (2010).
  • Mikkelsen TS , KuM, JaffeDB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153) , 553–560 (2007).
  • Wen B , WuH, ShinkaiY, IrizarryRA, FeinbergAP. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet.41(2) , 246–250 (2009).
  • Guelen L , PagieL, BrassetE et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197) , 948–951 (2008).
  • Filion GJ , van Steensel B. Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells. Nat. Genet.42(1) , 4; author reply 5–6 (2010).
  • Dodge JE , KangYK, BeppuH, LeiH, LiE. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell. Biol.24(6) , 2478–2486 (2004).
  • Faust C , LawsonKA, SchorkNJ, ThielB, MagnusonT. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development125(22) , 4495–4506 (1998).
  • O‘Carroll D , ErhardtS, PaganiM, BartonSC, SuraniMA, JenuweinT. The Polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol.21(13) , 4330–4336 (2001).
  • Pasini D , BrackenAP, HansenJB, CapilloM, HelinK. The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol.27(10) , 3769–3779 (2007).
  • Peters AH , O‘CarrollD, ScherthanH et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3) , 323–337 (2001).
  • Tachibana M , SugimotoK, NozakiM et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16(14) , 1779–1791 (2002).
  • Negre N , Brown Cd, Shah PK et al. A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet.6(1) , e1000814 (2010).
  • Negre N , BrownCD, MaL et al. A cis-regulatory map of the Drosophila genome. Nature 471(7339) , 527–531 (2011).
  • Gurudatta BV , CorcesVG. Chromatin insulators: lessons from the fly. Brief Funct. Genomic Proteomic8(4) , 276–282 (2009).
  • Moshkovich N , NishaP, BoylePJ, ThompsonBA, DaleRK, LeiEP. RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev.25(16) , 1686–1701 (2011).
  • Bell AC , WestAG, FelsenfeldG. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell98(3) , 387–396 (1999).
  • West AG , GasznerM, FelsenfeldG. Insulators: many functions, many mechanisms. Genes Dev.16(3) , 271–288 (2002).
  • Scott K c, Taubman AD, Geyer PK. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics153(2) , 787–798 (1999).
  • Kellum R , SchedlP. A position-effect assay for boundaries of higher order chromosomal domains. Cell64(5) , 941–950 (1991).
  • Roseman RR , PirrottaV, Geyer Pk. The su(Hw) protein insulates expression of the Drosophilamelanogaster white gene from chromosomal position-effects. EMBO J.12(2) , 435–442 (1993).
  • Mutskov V , FelsenfeldG. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J.23(1) , 138–149 (2004).
  • Mutskov VJ , FarrellCM, WadePA, WolffeAP, FelsenfeldG. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev.16(12) , 1540–1554 (2002).
  • Pikaart MJ , Recillas-TargaF, FelsenfeldG. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev.12(18) , 2852–2862 (1998).
  • Recillas-Targa F , PikaartMJ, Burgess-BeusseB et al. Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc. Natl Acad. Sci. USA 99(10) , 6883–6888 (2002).
  • Aker M , TubbJ, GrothAC et al. Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum. Gene Ther. 18(4) , 333–343 (2007).
  • Van Der Vlag J , Den Blaauwen JL, Sewalt RG, Van Driel R, Otte AP. Transcriptional repression mediated by Polycomb group proteins and other chromatin-associated repressors is selectively blocked by insulators. J. Biol. Chem.275(1) , 697–704 (2000).
  • Moreno R , MartinezI, PetrizJ, GonzalezJR, GratacosE, AranJM. Boundary sequences stabilize transgene expression from subtle position effects in retroviral vectors. Blood Cells Mol. Dis.43(2) , 214–220 (2009).
  • Yannaki E , TubbJ, AkerM, StamatoyannopoulosG, Emery Dw. Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol. Ther.5(5 Pt 1) , 589–598 (2002).
  • Hanawa H , YamamotoM, ZhaoH, ShimadaT, PersonsDA. Optimized lentiviral vector design improves titer and transgene expression of vectors containing the chicken beta-globin locus HS4 insulator element. Mol. Ther.17(4) , 667–674 (2009).
  • Reddy KL , ZulloJM, BertolinoE, SinghH. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature452(7184) , 243–247 (2008).
  • Kim YJ , CecchiniKR, KimTH. Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus. Proc. Natl Acad. Sci. USA108(18) , 7391–7396 (2011).
  • Litt MD , SimpsonM, Recillas-TargaF, PrioleauMN, FelsenfeldG. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J.20(9) , 2224–2235 (2001).
  • Prioleau MN , NonyP, SimpsonM, FelsenfeldG. An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J.18(14) , 4035–4048 (1999).
  • Hebbes TR , ClaytonAL, ThorneAW, Crane-RobinsonC. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J.13(8) , 1823–1830 (1994).
  • Bruce K , MyersFA, MantouvalouE et al. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res. 33(17) , 5633–5639 (2005).
  • Ma MK , HeathC, HairA, WestAG. Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity. PLoS Genet.7(7) , e1002175 (2011).
  • Myers FA , ChongW, EvansDR, ThorneAW, Crane-RobinsonC. Acetylation of histone H2B mirrors that of H4 and H3 at the chicken beta-globin locus but not at housekeeping genes. J. Biol. Chem.278(38) , 36315–36322 (2003).
  • Felsenfeld G , Burgess-BeusseB, FarrellC et al. Chromatin boundaries and chromatin domains. Cold Spring Harb. Symp. Quant. Biol. 69 , 245–250 (2004).
  • Litt MD , SimpsonM, GasznerM, AllisCD, FelsenfeldG. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science293(5539) , 2453–2455 (2001).
  • Ghirlando R , LittMD, PrioleauMN, Recillas-TargaF, FelsenfeldG. Physical properties of a genomic condensed chromatin fragment. J. Mol. Biol.336(3) , 597–605 (2004).
  • Chung JH , WhiteleyM, FelsenfeldG. A 5´ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell74(3) , 505–514 (1993).
  • Yao S , OsborneCS, BharadwajRR et al. Retrovirus silencer blocking by the cHS4 insulator is CTCF independent. Nucleic Acids Res. 31(18) , 5317–5323 (2003).
  • Dickson J , GowherH, StrogantsevR et al. VEZF1 elements mediate protection from DNA methylation. PLoS Genet. 6(1) , e1000804 (2010).
  • West AG , HuangS, GasznerM, LittMD, FelsenfeldG. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell16(3) , 453–463 (2004).
  • Huang S , LiX, YusufzaiTM, QiuY, FelsenfeldG. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol. Cell. Biol.27(22) , 7991–8002 (2007).
  • Huang S , LittM, FelsenfeldG. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev.19(16) , 1885–1893 (2005).
  • Chung JH , BellAC, FelsenfeldG. Characterization of the chicken beta-globin insulator. Proc. Natl Acad. Sci. USA94(2) , 575–580 (1997).
  • Gowher H , StuhlmannH, FelsenfeldG. Vezf1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt3b. Genes Dev.22(15) , 2075–2084 (2008).
  • Cedar H , BergmanY. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet.10(5) , 295–304 (2009).
  • Heath H , Ribeiro de Almeida C, Sleutels F et al. CTCF regulates cell cycle progression of alphabeta T cells in the thymus. EMBO J.27(21) , 2839–2850 (2008).
  • Phillips JE , CorcesVG. CTCF: master weaver of the genome. Cell137(7) , 1194–1211 (2009).
  • Chan PK , WaiA, PhilipsenS, Tan-UnKC. 5´HS5 of the human beta-globin locus control region is dispensable for the formation of the beta-globin active chromatin hub. PLoS ONE3(5) , e2134 (2008).
  • Zakany J , DubouleD. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev.17(4) , 359–366 (2007).
  • Goto Y , KimuraH. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res.37(22) , 7416–7428 (2009).
  • Miller JC , TanS, QiaoG et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29(2) , 143–148 (2011).
  • Kim TH , AbdullaevZK, SmithAD et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6) , 1231–1245 (2007).
  • Xi H , ShulhaHP, LinJM et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3(8) , e136 (2007).
  • Xie X , MikkelsenTS, GnirkeA, Lindblad-TohK, KellisM, LanderES. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc. Natl Acad. Sci. USA104(17) , 7145–7150 (2007).
  • Cuddapah S , JothiR, SchonesDE, RohTY, CuiK, ZhaoK. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res.19(1) , 24–32 (2009).
  • Barski A , CuddapahS, CuiK et al. High-resolution profiling of histone methylations in the human genome. Cell 129(4) , 823–837 (2007).
  • Jothi R , CuddapahS, BarskiA, CuiK, ZhaoK. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res.36(16) , 5221–5231 (2008).
  • Chen X , XuH, YuanP et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6) , 1106–1117 (2008).
  • Schmidt D , SchwaliePC, Ross-InnesCS et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 20(5) , 578–588 (2010).
  • Bernstein BE , StamatoyannopoulosJA, CostelloJF et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28(10) , 1045–1048 (2010).
  • Myers RM , StamatoyannopoulosJ, SnyderM et al. A user‘s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9(4) , e1001046 (2011).
  • Martin D , PantojaC, Fernandez Minan A et al. Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nat. Struct. Mol. Biol.18(6) , 708–714 (2011).
  • Bao L , ZhouM, CuiY. CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators. Nucleic Acids Res.36(Database issue) , D83–D87 (2008).
  • Wallace JA , FelsenfeldG. We gather together: insulators and genome organization. Curr. Opin. Genet. Dev.17(5) , 400–407 (2007).
  • Lieberman-Aiden E , van Berkum NL, Williams L et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326(5950) , 289–293 (2009).
  • Yao H , BrickK, EvrardY, XiaoT, Camerini-OteroRD, FelsenfeldG. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev.24(22) , 2543–2555 (2010).
  • Parelho V , HadjurS, SpivakovM et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132(3) , 422–433 (2008).
  • Wendt KS , YoshidaK, ItohT et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180) , 796–801 (2008).
  • Chien R , ZengW, KawauchiS et al. Cohesin mediates chromatin interactions that regulate mammalian beta-globin expression. J. Biol. Chem. 286(20) , 17870–17878 (2011).
  • Dorsett D . Cohesin: genomic insights into controlling gene transcription and development. Curr. Opin. Genet. Dev.21(2) , 199–206 (2011).
  • Hadjur S , WilliamsLM, RyanNK et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460(7253) , 410–413 (2009).
  • Mishiro T , IshiharaK, HinoS et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 28(9) , 1234–1245 (2009).
  • Nativio R , WendtKS, ItoY et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 5(11) , e1000739 (2009).
  • Gombert WM , FarrisSD, RubioED, Morey-RoslerKM, SchubachWH, KrummA. The c-myc insulator element and matrix attachment regions define the c-myc chromosomal domain. Mol. Cell. Biol.23(24) , 9338–9348 (2003).
  • Gombert WM , KrummA. Targeted deletion of multiple CTCF-binding elements in the human C-MYC gene reveals a requirement for CTCF in C-MYC expression. PLoS ONE4(7) , e6109 (2009).
  • Essafi A , WebbA, BerryRL et al. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev. Cell 21(3) , 559–574 (2011).
  • Bartolomei MS . Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev.23(18) , 2124–2133 (2009).
  • Lin S , Ferguson-SmithAC, SchultzRM, BartolomeiMS. Nonallelic transcriptional roles of CTCF and cohesins at imprinted loci. Mol. Cell. Biol.31(15) , 3094–3104 (2011).
  • de Laat W , GrosveldF. Spatial organization of gene expression: the active chromatin hub. Chromosome Res.11(5) , 447–459 (2003).
  • Splinter E , HeathH, KoorenJ et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20(17) , 2349–2354 (2006).
  • Farrell CM , WestAG, FelsenfeldG. Conserved CTCF insulator elements flank the mouse and human beta-globin loci. Mol. Cell. Biol.22(11) , 3820–3831 (2002).
  • Bender MA , ByronR, RagoczyT, TellingA, BulgerM, GroudineM. Flanking HS-62.5 and 3´ HS1, and regions upstream of the LCR, are not required for beta-globin transcription. Blood108(4) , 1395–1401 (2006).
  • Filippova GN , ChengMK, MooreJM et al. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev. Cell 8(1) , 31–42 (2005).
  • Bernstein BE , KamalM, Lindblad-TohK et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120(2) , 169–181 (2005).
  • Magdinier F , Yusufzai Tm, Felsenfeld G. Both CTCF-dependent and -independent insulators are found between the mouse T cell receptor alpha and Dad1 genes. J. Biol. Chem.279(24) , 25381–25389 (2004).
  • Gomos-Klein J , HarrowF, AlarconJ, Ortiz Bd. CTCF-independent, but not CTCF-dependent, elements significantly contribute to TCR-alpha locus control region activity. J. Immunol.179(2) , 1088–1095 (2007).
  • Harrow F , Amuta Ju, Hutchinson Sr, Akwaa F, Ortiz Bd. Factors binding a non-classical Cis-element prevent heterochromatin effects on locus control region activity. J. Biol. Chem.279(17) , 17842–17849 (2004).
  • Ortiz BD , HarrowF, CadoD, SantosoB, WinotoA. Function and factor interactions of a locus control region element in the mouse T cell receptor-alpha/Dad1 gene locus. J. Immunol.167(7) , 3836–3845 (2001).
  • Raab JR , KamakakaRT. Insulators and promoters: closer than we think. Nat. Rev. Genet.11(6) , 439–446 (2010).
  • Gallagher PG , NilsonDG, SteinerLA, MaksimovaYD, LinJY, BodineDM. An insulator with barrier-element activity promotes alpha-spectrin gene expression in erythroid cells. Blood113(7) , 1547–1554 (2009).
  • Wong EY , LinJ, ForgetBG, BodineDM, GallagherPG. Sequences downstream of the erythroid promoter are required for high level expression of the human alpha-spectrin gene. J. Biol. Chem.279(53) , 55024–55033 (2004).
  • Gallagher PG , SteinerLA, LiemRI et al. Mutation of a barrier insulator in the human ankyrin-1 gene is associated with hereditary spherocytosis. J. Clin. Invest. 120(12) , 4453–4465 (2010).
  • Carroll D . Genome engineering with zinc-finger nucleases. Genetics188(4) , 773–782 (2011).
  • Bogdanove AJ , VoytasDF. TAL effectors: customizable proteins for DNA targeting. Science333(6051) , 1843–1846 (2011).
  • van Bemmel JG , PagieL, BraunschweigU et al. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS ONE 5(11) , e15013 (2010).
  • Peric-Hupkes D , MeulemanW, PagieL et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38(4) , 603–613 (2010).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.