300
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Regulation of miRNA Genes and their Role in Human Melanomas

&
Pages 81-90 | Published online: 14 Feb 2012

References

  • Clark WH Jr, Elder DE, Guerry DT, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol.15(12) , 1147–1165 (1984).
  • Moan J , DahlbackA, SetlowRB. Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochem. Photobiol.70(2) , 243–247 (1999).
  • Runkle GP , ZaloznikAJ. Malignant melanoma. Am. Fam. Physician49(1) , 91–98, 102–104 (1994).
  • Kuchelmeister C , Schaumburg-LeverG, GarbeC. Acral cutaneous melanoma in caucasians. clinical features, histopathology and prognosis in 112 patients. Br. J. Dermatol.143(2) , 275–280 (2000).
  • Situm M , BolancaZ, BuljanM. Lentigo maligna melanoma--the review. Coll. Antropol.34(Suppl. 2) , 299–301 (2010).
  • Adler MJ , WhiteCR Jr. Amelanotic malignant melanoma. Semin. Cutan. Med. Surg.16(2) , 122–130 (1997).
  • Forman SB , FerringerTC, PeckhamSJ et al. Is superficial spreading melanoma still the most common form of malignant melanoma? J. Am. Acad. Dermatol. 58(6) , 1013–1020 (2008).
  • Curtin JA , FridlyandJ, KageshitaT et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353(20) , 2135–2147 (2005).
  • Ren S , LiuS, HowellP Jr et al. The impact of genomics in understanding human melanoma progression and metastasis. Cancer Control15(3) , 202–215 (2008).
  • Carr KM , BittnerM, TrentJM. Gene-expression profiling in human cutaneous melanoma. Oncogene22(20) , 3076–3080 (2003).
  • Houghton AN , PolskyD. Focus on melanoma. Cancer Cell2(4) , 275–278 (2002).
  • Hoek K , RimmDL, WilliamsKR et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 64(15) , 5270–5282 (2004).
  • Alonso SR , TraceyL, OrtizP et al. A high-throughput study in melanoma identifies epithelial–mesenchymal transition as a major determinant of metastasis. Cancer Res. 67(7) , 3450–3460 (2007).
  • Kudo-Saito C , ShirakoH, TakeuchiT, KawakamiY. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell15(3) , 195–206 (2009).
  • Bennett DC . How to make a melanoma. what do we know of the primary clonal events? Pigment Cell Melanoma Res.21(1) , 27–38 (2008).
  • Johnson JM , EdwardsS, ShoemakerD, SchadtEE. Dark matter in the genome. evidence of widespread transcription detected by microarray tiling experiments. Trends Genet.21(2) , 93–102 (2005).
  • Van Bakel H , NislowC, BlencoweBJ, HughesTR. Most ‘dark matter‘ transcripts are associated with known genes. PLoS Biol.8(5) , e1000371 (2010).
  • Clark MB , AmaralPP, SchlesingerFJ et al. The reality of pervasive transcription. PLoS Biol. 9(7) , e1000625; discussion e1001102 (2011).
  • Calin GA , CroceCM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene25(46) , 6202–6210 (2006).
  • Chen CZ . MicroRNAs as oncogenes and tumor suppressors. N. Engl. J. Med.353(17) , 1768–1771 (2005).
  • Dalmay T , EdwardsDR. MicroRNAs and the hallmarks of cancer. Oncogene25(46) , 6170–6175 (2006).
  • Esquela-Kerscher A , SlackFJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer6(4) , 259–269 (2006).
  • Hwang HW , MendellJT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer94(6) , 776–780 (2006).
  • Lee YS , DuttaA. MicroRNAs. small but potent oncogenes or tumor suppressors. Curr. Opin. Investig. Drugs7(6) , 560–564 (2006).
  • Slack FJ , WeidhaasJB. MicroRNAs as a potential magic bullet in cancer. Future Oncol.2(1) , 73–82 (2006).
  • Volinia S , CalinGA, LiuCG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103(7) , 2257–2261 (2006).
  • Zhang B , PanX, CobbGP, AndersonTA. microRNAs as oncogenes and tumor suppressors. Dev. Biol.302(1) , 1–12 (2007).
  • Saito Y , JonesPA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle5(19) , 2220–2222 (2006).
  • Voorhoeve PM , Le Sage C, Schrier M et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell124(6) , 1169–1181 (2006).
  • Ruvkun G . Clarifications on miRNA and cancer. Science311(5757) , 36–37 (2006).
  • Hammond SM . MicroRNAs as oncogenes. Curr. Opin. Genet. Dev.16(1) , 4–9 (2006).
  • Tam W , DahlbergJE. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer45(2) , 211–212 (2006).
  • Hede K . Studies define role of microRNA in cancer. J. Natl Cancer Inst.97(15) , 1114–1115 (2005).
  • Eder M , ScherrM. MicroRNA and lung cancer. N. Engl. J. Med.352(23) , 2446–2448 (2005).
  • Mcmanus MT . MicroRNAs and cancer. Semin Cancer Biol13(4) , 253–258 (2003).
  • Calin GA , CimminoA, FabbriM et al. MiR-15a and miR-16–11 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105(13) , 5166–5171 (2008).
  • Xia L , ZhangD, DuR et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 123(2) , 372–379 (2008).
  • Mazar J , DeyoungK, KhaitanD et al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS ONE 5(11) , e13779 (2010).
  • Bird A . Perceptions of epigenetics. Nature447(7143) , 396–398 (2007).
  • Vinod Saladi S , MaratheH, De La Serna IL. SWItching on the transcriptional circuitry in melanoma. Epigenetics5(6) , 469–475 (2010).
  • Brait M , SidranskyD. Cancer epigenetics. above and beyond. Toxicol. Mech. Methods21(4) , 275–288 (2011).
  • Portela A , EstellerM. Epigenetic modifications and human disease. Nat. Biotechnol.28(10) , 1057–1068 (2010).
  • Grewal SI , MoazedD. Heterochromatin and epigenetic control of gene expression. Science301(5634) , 798–802 (2003).
  • Robertson KD . DNA methylation and human disease. Nat. Rev. Genet.6(8) , 597–610 (2005).
  • Okano M , BellDW, HaberDA, LiE. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99(3) , 247–257 (1999).
  • Bestor T , LaudanoA, MattalianoR, IngramV. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol.203(4) , 971–983 (1988).
  • Li E , BestorTH, JaenischR. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69(6) , 915–926 (1992).
  • Gonzalgo ML , BenderCM, YouEH et al. Low frequency of p16/CDKN2A methylation in sporadic melanoma. comparative approaches for methylation analysis of primary tumors. Cancer Res. 57(23) , 5336–5347 (1997).
  • Worm J , BartkovaJ, KirkinAF et al. Aberrant p27Kip1 promoter methylation in malignant melanoma. Oncogene 19(44) , 5111–5115 (2000).
  • Worm J , ChristensenC, GronbaekK, TulchinskyE, GuldbergP. Genetic and epigenetic alterations of the APC gene in malignant melanoma. Oncogene23(30) , 5215–5226 (2004).
  • Hoon DS , SpugnardiM, KuoC, HuangSK, MortonDL, TabackB. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene23(22) , 4014–4022 (2004).
  • Guan X , SagaraJ, YokoyamaT et al. ASC/TMS1, a caspase-1 activating adaptor, is downregulated by aberrant methylation in human melanoma. Int. J. Cancer 107(2) , 202–208 (2003).
  • Gaur A , JewellDA, LiangY et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 67(6) , 2456–2468 (2007).
  • Fabbri M , GarzonR, CimminoA et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104(40) , 15805–15810 (2007).
  • Fazi F , RacanicchiS, ZardoG et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5) , 457–466 (2007).
  • Grady WM , ParkinRK, MitchellPS et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27) , 3880–3888 (2008).
  • Lehmann U , HasemeierB, ChristgenM et al. Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J. Pathol. 214(1) , 17–24 (2008).
  • Rothhammer T , BosserhoffAK. Epigenetic events in malignant melanoma. Pigment Cell Res.20(2) , 92–111 (2007).
  • Maat W , Van Der Velden PA, Out-Luiting C et al. Epigenetic inactivation of RASSF1a in uveal melanoma. Invest. Ophthalmol. Vis. Sci.48(2) , 486–490 (2007).
  • Jeffery L , NakielnyS. Components of the DNA methylation system of chromatin control are RNA-binding proteins. J. Biol. Chem.279(47) , 49479–49487 (2004).
  • Bernstein E , AllisCD. RNA meets chromatin. Genes Dev.19(14) , 1635–1655 (2005).
  • Robins H , LiY, PadgettRW. Incorporating structure to predict microRNA targets. Proc. Natl Acad. Sci. USA102(11) , 4006–4009 (2005).
  • Kim VN , NamJW. Genomics of microRNA. Trends Genet.22(3) , 165–173 (2006).
  • Hill AE , HongJS, WenH et al. Micro-RNA-like effects of complete intronic sequences. Front Biosci. 11 , 1998–2006 (2006).
  • Ying SY , LinSL. Intronic microRNAs. Biochem. Biophys. Res. Commun.326(3) , 515–520 (2005).
  • Ying SY , LinSL. Intron-derived microRNAs – fine tuning of gene functions. Gene342(1) , 25–28 (2004).
  • Ying SY , LinSL. Current perspectives in intronic micro RNAs (miRNAs). J. Biomed. Sci.13(1) , 5–15 (2006).
  • Stolc V , SamantaMP, TongprasitW et al. Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc. Natl Acad. Sci. USA 102(12) , 4453–4458 (2005).
  • Robins H , PressWH. Human microRNAs target a functionally distinct population of genes with AT-rich 3´ UTRs. Proc. Natl Acad. Sci. USA102(43) , 15557–15562 (2005).
  • Xie X , LuJ, KulbokasEJ et al. Systematic discovery of regulatory motifs in human promoters and 3´ UTRs by comparison of several mammals. Nature 434(7031) , 338–345 (2005).
  • Jing Q , HuangS, GuthS et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120(5) , 623–634 (2005).
  • Ambros V , LeeRC, LavanwayA, WilliamsPT, JewellD. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol.13(10) , 807–818 (2003).
  • Tijsterman M , PlasterkRH. Dicers at RISC; the mechanism of RNAi. Cell117(1) , 1–3 (2004).
  • Yang WJ , YangDD, NaS, SanduskyGE, ZhangQ, ZhaoG. Dicer is required for embryonic angiogenesis during mouse development. J. Biol. Chem.280(10) , 9330–9335 (2005).
  • Lee YS , NakaharaK, PhamJW et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117(1) , 69–81 (2004).
  • Suzuki H , TakatsukaS, AkashiH et al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of microRNA genes in colorectal cancer. Cancer Res. 71(17) , 5646–5658 (2011).
  • Braconi C , KogureT, ValeriN et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30(47) , 4750–4756 (2011)
  • Cao Q , ManiRS, AteeqB et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20(2) , 187–199 (2011).
  • So AY , JungJW, LeeS, KimHS, KangKS. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS ONE6(5) , e19503 (2011).
  • Mazar J , DeblasioD, GovindarajanSS, ZhangS, PereraRJ. Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett.585(15) , 2467–2476 (2011).
  • Khaitan D , DingerME, MazarJ et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 71(11) , 3852–3862 (2011).
  • Lujambio A , CalinGA, VillanuevaA et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105(36) , 13556–13561 (2008).
  • De Souza Rocha Simonini P , BreilingA, GuptaN et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 70(22) , 9175–9184 (2010).
  • Ding L , XuY, ZhangW et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 20(7) , 784–793 (2010).
  • Tsukamoto Y , NakadaC, NoguchiT et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14–13–3zeta. Cancer Res. 70(6) , 2339–2349 (2010).
  • Dhawan P , SinghAB, EllisDL, RichmondA. Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res.62(24) , 7335–7342 (2002).
  • Ura K , ArakiM, SaekiH et al. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J. 20(8) , 2004–2014 (2001).
  • Martini E , RocheDM, MarheinekeK, VerreaultA, AlmouzniG. Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J. Cell Biol.143(3) , 563–575 (1998).
  • Ferraiuolo MA , LeeCS, LerLW et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl Acad. Sci. USA 101(12) , 4118–4123 (2004).
  • Lejeune F , RanganathanAC, MaquatLE. eIF4G is required for the pioneer round of translation in mammalian cells. Nat. Struct. Mol. Biol.11(10) , 992–1000 (2004).
  • Brumbaugh KM , OtternessDM, GeisenC et al. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell 14(5) , 585–598 (2004).
  • Chiu SY , LejeuneF, RanganathanAC, MaquatLE. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev.18(7) , 745–754 (2004).
  • Maquat LE . Nonsense-mediated mRNA decay. splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol.5(2) , 89–99 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.