776
Views
0
CrossRef citations to date
0
Altmetric
Review

Chromatin Response to DNA Double-Strand Break Damage

Pages 307-321 | Published online: 30 Jun 2011

Bibliography

  • Luger K , MaederAW, RichmondRK, SargentDF, RichmondTJ: X-ray structure of the nucleosome core particle at 2.8 Å resolution.Nature389 , 251–259 (1997).
  • Henikoff S , FuruyamaT, AhmadK: Histone variants, nucleosome assembly and epigenetic inheritance.Trends Genet.20 , 320–326 (2004).
  • Strahl BD , AllisCD: The language of covalent histone modifications.Nature403 , 41–45 (2000).
  • Jenuwein T , AllisCD: Translating the histone code.Science293 , 1074–1080 (2001).
  • Berger SL : Histone modifications in transcriptional regulation.Curr. Opin. Genet. Dev.12 , 142–148 (2002).
  • Kouzarides T : Chromatin modifications and their function.Cell128 , 693–705 (2007).
  • Lee JS , SmithE, ShilatifardA: The language of histone crosstalk.Cell142 , 682–685 (2010).
  • Clapier CR , CairnsBR: The biology of chromatin remodeling complexes.Annu. Rev. Biochem.78 , 273–304 (2009).
  • Bao Y , ShenX: SnapShot: chromatin remodeling complexes.Cell129 , 632 (2007).
  • Krogan NJ , KeoghMC, DattaNet al.: A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1.Mol. Cell12 , 1565–1576 (2003).
  • Mizuguchi G , ShenX, LandryJ, WuWH, SenS, WuC: ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex.Science303 , 343–348 (2004).
  • Redon C , PilchD, RogakouE, SedelnikovaO, NewrockK, BonnerW: Histone H2A variants H2AX and H2AZ.Curr. Opin. Genet. Dev.12 , 162–169 (2002).
  • Rogakou EP , PilchDR, OrrAH, IvanovaVS, BonnerWM: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.J. Biol. Chem.273 , 5858–5868 (1998).
  • Stiff T , O‘DriscollM, RiefN, IwabuchiK, LobrichM, JeggoPA: ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation.Cancer Res.64 , 2390–2396 (2004).
  • Stiff T , WalkerSA, CerosalettiKet al.: ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling.EMBO J.25 , 5775–5782 (2006).
  • Rogakou EP , BoonC, RedonC, BonnerWM: Megabase chromatin domains involved in DNA double-strand breaks in vivo.J. Cell Biol.146 , 905–916 (1999).
  • Pilch DR , SedelnikovaOA, RedonC, CelesteA, NussenzweigA, BonnerWM: Characteristics of γ-H2AX foci at DNA double-strand breaks sites.Biochem. Cell Biol.81 , 123–129 (2003).
  • Stucki M , ClappertonJA, MohammadD, YaffeMB, SmerdonSJ, JacksonSP: MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks.Cell123 , 1213–1226 (2005).
  • Lukas C , MelanderF, StuckiMet al.: Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention.EMBO J.23 , 2674–2683 (2004).
  • Uziel T , LerenthalY, MoyalL, AndegekoY, MittelmanL, ShilohY: Requirement of the MRN complex for ATM activation by DNA damage.EMBO J.22 , 5612–5621 (2003).
  • Lee JH , PaullTT: ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex.Science308 , 551–554 (2005).
  • Paull TT , RogakouEP, YamazakiV, KirchgessnerCU, GellertM, BonnerWM: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.Curr. Biol.10 , 886–895 (2000).
  • Stucki M , JacksonSP: γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes.DNA Repair (Amst.)5 , 534–543 (2006).
  • Celeste A , DifilippantonioS, DifilippantonioMJet al.: H2AX haploinsufficiency modifies genomic stability and tumor susceptibility.Cell114 , 371–383 (2003).
  • Celeste A , Fernandez-CapetilloO, KruhlakMJet al.: Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks.Nat. Cell Biol.5 , 675–679 (2003).
  • Morrison AJ , HighlandJ, KroganNJet al.: INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair.Cell119 , 767–775 (2004).
  • Downs JA , AllardS, Jobin-RobitailleOet al.: Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites.Mol. Cell16 , 979–990 (2004).
  • van Attikum H , FritschO, HohnB, GasserSM: Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair.Cell119 , 777–788 (2004).
  • Nakamura AJ , RaoVA, PommierY, BonnerWM: The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks.Cell Cycle9 , 389–397 (2010).
  • Downs JA , LowndesNF, JacksonSP: A role for Saccharomyces cerevisiae histone H2A in DNA repair.Nature408 , 1001–1004 (2000).
  • Heo K , KimH, ChoiSHet al.: FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16.Mol. Cell30 , 86–97 (2008).
  • Fink M , ImholzD, ThomaF: Contribution of the serine 129 of histone H2A to chromatin structure.Mol. Cell Biol.27 , 3589–3600 (2007).
  • Nazarov IB , SmirnovaAN, KrutilinaRIet al.: Dephosphorylation of histone γ-H2AX during repair of DNA double-strand breaks in mammalian cells and its inhibition by calyculin A.Radiat. Res.160 , 309–317 (2003).
  • Chowdhury D , KeoghMC, IshiiH, PetersonCL, BuratowskiS, LiebermanJ: γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair.Mol. Cell20 , 801–809 (2005).
  • Chowdhury D , XuX, ZhongXet al.: A PP4-phosphatase complex dephosphorylates γ-H2AX generated during DNA replication.Mol. Cell31 , 33–46 (2008).
  • Keogh MC , KimJA, DowneyMet al.: A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery.Nature439 , 497–501 (2006).
  • Tsukuda T , FlemingAB, NickoloffJA, OsleyMA: Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.Nature438 , 379–383 (2005).
  • Berkovich E , MonnatRJ Jr, Kastan MB: Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat. Cell Biol.9 , 683–690 (2007).
  • Kusch T , FlorensL, MacdonaldWHet al.: Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions.Science306 , 2084–2087 (2004).
  • Linger JG , TylerJK: Chromatin disassembly and reassembly during DNA repair.Mutat. Res.618 , 52–64 (2007).
  • Xiao A , LiH, ShechterDet al.: WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity.Nature457 , 57–62 (2009).
  • Cook PJ , JuBG, TeleseF, WangX, GlassCK, RosenfeldMG: Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions.Nature458 , 591–596 (2009).
  • Jiang X , XuY, PriceBD: Acetylation of H2AX on lysine 36 plays a key role in the DNA double-strand break repair pathway.FEBS Lett.584 , 2926–2930 (2010).
  • Ikura T , TashiroS, KakinoAet al.: DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics.Mol. Cell Biol.27 , 7028–7040 (2007).
  • Yamagata K , KitabayashiI: Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX.Biochem. Biophys. Res. Commun.390 , 1355–1360 (2009).
  • Dickey JS , RedonCE, NakamuraAJ, BairdBJ, SedelnikovaOA, BonnerWM: H2AX: functional roles and potential applications.Chromosoma118 , 683–692 (2009).
  • Zlatanova J , ThakarA: H2A.Z: view from the top.Structure16 , 166–179 (2008).
  • Kobor MS , VenkatasubrahmanyamS, MeneghiniMDet al.: A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin.PLoS Biol.2 , E131 (2004).
  • Ruhl DD , JinJ, CaiYet al.: Purification of a Human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes.Biochemistry45 , 5671–5677 (2006).
  • Luk E , RanjanA, FitzgeraldPC, MizuguchiG, HuangY, WeiD, WuC: Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome.Cell143 , 725–736 (2010).
  • Doyon Y , CoteJ: The highly conserved and multifunctional NuA4 HAT complex.Curr. Opin. Genet. Dev.14 , 147–154 (2004).
  • Altaf M , AugerA, CovicM, CoteJ: Connection between histone H2A variants and chromatin remodeling complexes.Biochem. Cell Biol.87 , 35–50 (2009).
  • Kalocsay M , HillerNJ, JentschS: Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break.Mol. Cell33 , 335–343 (2009).
  • Bird AW , YuDY, Pray-GrantMGet al.: Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair.Nature419 , 411–415 (2002).
  • Altaf M , AugerA, Monnet-SaksoukJet al.: NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex.J. Biol. Chem.285 , 15966–15977 (2010).
  • Papamichos-Chronakis M , KrebsJE, PetersonCL: Interplay between INO80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage.Genes Dev.20 , 2437–2449 (2006).
  • Jha S , ShibataE, DuttaA: Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage.Mol. Cell Biol.28 , 2690–2700 (2008).
  • Morillo-Huesca M , Clemente-RuizM, AndujarE, PradoF: The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.PLoS ONE5 , E12143 (2010).
  • Halley JE , KaplanT, WangAY, KoborMS, RineJ: Roles for H2A.Z and its acetylation in GAL1 transcription and gene induction, but not GAL1-transcriptional memory.PLoS Biol.8 , E1000401 (2010).
  • Papamichos-Chronakis M , WatanabeS, RandoOJ, PetersonCL: Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity.Cell144 , 200–213 (2011).
  • Choy JS , KronSJ: NuA4 subunit Yng2 function in intra-S-phase DNA damage response.Mol. Cell Biol.22 , 8215–8225 (2002).
  • Murr R , LoizouJI, YangYGet al.: Histone acetylation by Trrap–Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks.Nat. Cell Biol.8 , 91–99 (2006).
  • Ogiwara H , UiA, OtsukaAet al.: Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors.Oncogene30(18) , 2135–2146 (2011).
  • Munks RJ , MooreJ, O‘NeillLP, TurnerBM: Histone H4 acetylation in Drosophila. Frequency of acetylation at different sites defined by immunolabelling with site-specific antibodies.FEBS Lett.284 , 245–248 (1991).
  • Robinson PJ , AnW, RouthAet al.: 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction.J. Mol. Biol.381 , 816–825 (2008).
  • Shogren-Knaak M , IshiiH, SunJM, PazinMJ, DavieJR, PetersonCL: Histone H4-K16 acetylation controls chromatin structure and protein interactions.Science311 , 844–847 (2006).
  • Fraga MF , BallestarE, Villar-GareaAet al.: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.Nat. Genet.37 , 391–400 (2005).
  • Sharma GG , SoS, GuptaAet al.: MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair.Mol. Cell Biol.30 , 3582–3595 (2010).
  • Li X , CorsaCA, PanPWet al.: MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1.Mol. Cell Biol.30 , 5335–5347 (2010).
  • Li Q , ZhouH, WurteleHet al.: Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly.Cell134 , 244–255 (2008).
  • Chen CC , CarsonJJ, FeserJet al.: Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair.Cell134 , 231–243 (2008).
  • Das C , LuciaMS, HansenKC, TylerJK: CBP/p300-mediated acetylation of histone H3 on lysine 56.Nature459 , 113–117 (2009).
  • Yuan J , PuM, ZhangZ, LouZ: Histone H3-K56 acetylation is important for genomic stability in mammals.Cell Cycle8 , 1747–1753 (2009).
  • Dovey OM , FosterCT, CowleySM: Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation.Proc. Natl Acad. Sci. USA107 , 8242–8247 (2010).
  • Miller KM , TjeertesJV, CoatesJet al.: Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining.Nat. Struct. Mol. Biol.17 , 1144–1151 (2010).
  • Huyen Y , ZgheibO, DitullioRA Jr et al.: Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432 , 406–411 (2004).
  • Lazzaro F , SapountziV, GranataMet al.: Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres.EMBO J.27 , 1502–1512 (2008).
  • Botuyan MV , LeeJ, WardIMet al.: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.Cell127 , 1361–1373 (2006).
  • Schotta G , LachnerM, SarmaKet al.: A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin.Genes Dev.18 , 1251–1262 (2004).
  • Yang H , PesaventoJJ, StarnesTWet al.: Preferential dimethylation of histone H4 lysine 20 by Suv4–20.J. Biol. Chem.283 , 12085–12092 (2008).
  • Pei H , ZhangL, LuoKet al.: MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites.Nature470 , 124–128 (2011).
  • Ward IM , MinnK, JordaKG, ChenJ: Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX.J. Biol. Chem.278 , 19579–19582 (2003).
  • Peng JC , KarpenGH: Heterochromatic genome stability requires regulators of histone H3 K9 methylation.PLoS Genet.5 , E1000435 (2009).
  • Ayoub N , JeyasekharanAD, BernalJA, VenkitaramanAR: HP1-β mobilization promotes chromatin changes that initiate the DNA damage response.Nature453 , 682–686 (2008).
  • Sun Y , JiangX, XuYet al.: Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60.Nat. Cell Biol.11 , 1376–1382 (2009).
  • Palomera-Sanchez Z , Bucio-MendezA, Valadez-GrahamV, ReynaudE, ZuritaM: Drosophila p53 is required to increase the levels of the dKDM4B demethylase after UV-induced DNA damage to demethylate histone H3 lysine 9.J. Biol. Chem.285 , 31370–31379 (2010).
  • Faucher D , WellingerRJ: Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway.PLoS Genet.6 , E1001082 (2010).
  • Ingvarsdottir K , EdwardsC, LeeMGet al.: Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae.Mol. Cell. Biol27 , 7856–7864 (2007).
  • Cheung WL , TurnerFB, KrishnamoorthyTet al.: Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae.Curr. Biol.15 , 656–660 (2005).
  • Utley RT , LacosteN, Jobin-RobitailleO, AllardS, CoteJ: Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4.Mol. Cell Biol.25 , 8179–8190 (2005).
  • Fernandez-Capetillo O , AllisCD, NussenzweigA: Phosphorylation of histone H2B at DNA double-strand breaks.J. Exp. Med.199 , 1671–1677 (2004).
  • Ahn SH , DiazRL, GrunsteinM, AllisCD: Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10.Mol. Cell24 , 211–220 (2006).
  • Cheung WL , AjiroK, SamejimaKet al.: Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase.Cell113 , 507–517 (2003).
  • Al-Hakim A , Escribano-DiazC, LandryMCet al.: The ubiquitous role of ubiquitin in the DNA damage response.DNA Repair9 , 1229–1240 (2010).
  • Mailand N , Bekker-JensenS, FaustrupHet al.: RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins.Cell131 , 887–900 (2007).
  • Huen MS , GrantR, MankeIet al.: RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly.Cell131 , 901–914 (2007).
  • Kolas NK , ChapmanJR, NakadaSet al.: Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase.Science318 , 1637–1640 (2007).
  • Doil C , MailandN, Bekker-JensenSet al.: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins.Cell136 , 435–446 (2009).
  • Nakada S , TaiI, PanierSet al.: Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1.Nature466 , 941–946 (2010).
  • Yan Q , DuttS, XuRet al.: BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response.Mol. Cell36 , 110–120 (2009).
  • Giannattasio M , LazzaroF, PlevaniP, Muzi-FalconiM: The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1.J. Biol. Chem.280 , 9879–9886 (2005).
  • Briggs SD , XiaoT, SunZWet al.: Gene silencing: trans-histone regulatory pathway in chromatin.Nature418 , 498 (2002).
  • Henry KW , WyceA, LoWSet al.: Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8.Genes Dev.17 , 2648–2663 (2003).
  • Emre NC , IngvarsdottirK, WyceAet al.: Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing.Mol. Cell17 , 585–594 (2005).
  • Morrison AJ , ShenX: Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes.Nat. Rev. Mol. Cell Biol.10 , 373–384 (2009).
  • Bao Y , ShenX: INO80 subfamily of chromatin remodeling complexes.Mutat. Res.618 , 18–29 (2007).
  • Holliday R : Molecular aspects of genetic exchange and gene conversion.Genetics78 , 273–287 (1974).
  • Shen X , MizuguchiG, HamicheA, WuC: A chromatin remodelling complex involved in transcription and DNA processing.Nature406 , 541–544 (2000).
  • Shen X , RanalloR, ChoiE, WuC: Involvement of actin-related proteins in ATP-dependent chromatin remodeling.Mol. Cell12 , 147–155 (2003).
  • Ikura T , OgryzkoVV, GrigorievMet al.: Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis.Cell102 , 463–473 (2000).
  • van Attikum H , FritschO, GasserSM: Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks.EMBO J.26 , 4113–4125 (2007).
  • Kashiwaba SI , KitahashiK, WatanabeT, OnodaF, OhtsuM, MurakamiY: The mammalian INO80 complex is recruited to DNA damage sites in an ARP8 dependent manner.Biochem. Biophys. Res. Commun.402 , 619–625 (2010).
  • Morrison AJ , KimJA, PersonMDet al.: Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses.Cell130 , 499–511 (2007).
  • Park EJ , HurSK, KwonJ: Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes.Biochem. J.431 , 179–187 (2010).
  • Sun Y , JiangX, ChenS, FernandesN, PriceBD: A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM.Proc. Natl Acad. Sci. USA102 , 13182–13187 (2005).
  • Sun Y , XuY, RoyK, PriceBD: DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity.Mol. Cell Biol.27 , 8502–8509 (2007).
  • Xu Y , SunY, JiangXet al.: The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair.J. Cell Biol.191 , 31–43 (2010).
  • Chai B , HuangJ, CairnsBR, LaurentBC: Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair.Genes Dev.19 , 1656–1661 (2005).
  • Shim EY , MaJL, OumJH, YanezY, LeeSE: The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks.Mol. Cell Biol.25 , 3934–3944 (2005).
  • Liang B , QiuJ, RatnakumarK, LaurentBC: RSC functions as an early double-strand-break sensor in the cell‘s response to DNA damage.Curr. Biol.17 , 1432–1437 (2007).
  • Huang J , HsuJM, LaurentBC: The RSC nucleosome-remodeling complex is required for Cohesin‘s association with chromosome arms.Mol. Cell13 , 739–750 (2004).
  • Baetz KK , KroganNJ, EmiliA, GreenblattJ, HieterP: The ctf13–30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion.Mol. Cell Biol.24 , 1232–1244 (2004).
  • Shim EY , HongSJ, OumJH, YanezY, ZhangY, LeeSE: RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin.Mol. Cell Biol.27 , 1602–1613 (2007).
  • Kent NA , ChambersAL, DownsJA: Dual chromatin remodeling roles for RSC during DNA double strand break induction and repair at the yeast MAT locus.J. Biol. Chem.282 , 27693–27701 (2007).
  • Park JH , ParkEJ, LeeHSet al.: Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction.EMBO J.25 , 3986–3997 (2006).
  • Lee HS , ParkJH, KimSJ, KwonSJ, KwonJ: A cooperative activation loop among SWI/SNF, γ-H2AX and H3 acetylation for DNA double-strand break repair.EMBO J.29 , 1434–1445 (2010).
  • Denslow SA , WadePA: The human Mi-2/NuRD complex and gene regulation.Oncogene26 , 5433–5438 (2007).
  • Ramirez J , HagmanJ: The Mi-2/NuRD complex: a critical epigenetic regulator of hematopoietic development, differentiation and cancer.Epigenetics4 , 532–536 (2009).
  • Pegoraro G , KubbenN, WickertU, GohlerH, HoffmannK, MisteliT: Ageing-related chromatin defects through loss of the NURD complex.Nat. Cell Biol.11 , 1261–1267 (2009).
  • Smeenk G , WiegantWW, VrolijkH, SolariAP, PastinkA, van Attikum H: The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J. Cell Biol.190 , 741–749 (2010).
  • Larsen DH , PoinsignonC, GudjonssonTet al.: The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage.J. Cell Biol.190 , 731–740 (2010).
  • Polo SE , KaidiA, BaskcombL, GalantyY, JacksonSP: Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4.EMBO J.29 , 3130–3139 (2010).
  • Chou DM , AdamsonB, DephoureNEet al.: A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage.Proc. Natl Acad. Sci. USA107 , 18475–18480 (2010).
  • Urquhart AJ , GateiM, RichardDJ, KhannaKK: ATM mediated phosphorylation of CHD4 contributes to genome maintenance.Genome Integr.2 , 1 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.