438
Views
0
CrossRef citations to date
0
Altmetric
Review

Transcriptional Control of Embryonic and Induced Pluripotent Stem Cells

Pages 323-343 | Published online: 30 Jun 2011

Bibliography

  • Jaenisch R , YoungR: Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming.Cell132(4) , 567–582 (2008).
  • Orkin SH , WangJ, KimJet al.: The transcriptional network controlling pluripotency in ES cells.Cold Spring Harb. Symp. Quant. Biol.73 , 95–202 (2008).
  • Hochedlinger K , PlathK: Epigenetic reprogramming and induced pluripotency.Development136(4) , 509–523 (2009).
  • Chen X , VegaVB, NgHH: Transcriptional regulatory networks in embryonic stem cells.Cold Spring Harb. Symp. Quant. Biol.73 , 203–209 (2008).
  • Tapscott SJ : The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription.Development132(12) , 2685–2695 (2005).
  • Vaquerizas JM , KummerfeldSK, TeichmannSA, LuscombeNM: A census of human transcription factors: function, expression and evolution.Nat. Rev. Genet.10(4) , 252–263 (2009).
  • Mallo M , Welik,DM, DeschampsJ: Hox genes and regional patterning of the vertebrate body plan.Dev. Biol.344(1) , 7–15 (2010).
  • Fuda NJ , ArdehaliMB, LisJT: Defining mechanisms that regulate RNA polymerase II transcription in vivo.Nature461(7261) , 186–192 (2009).
  • Li B , CareyM, WorkmanJL: The role of chromatin during transcription.Cell128(4) , 707–719 (2007).
  • Rosenfeld MG , LunyakVV, GlassCK: Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response.Genes Dev.20(11) , 1405–1428 (2006).
  • Silva J , SmithA: Capturing pluripotency.Cell132(4) , 532–536 (2008).
  • Niwa H , MiyazakiJ, SmithAG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.Nat. Genet.24(4) , 372–376 (2000).
  • Nichols J , ZevnikB, AnastassiadisKet al.: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Cell95(3) , 379–391 (1998).
  • Rosner MH , ViganoMA, OzatoKet al.: A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo.Nature345(6277) , 686–692 (1990).
  • Scholer HR , RuppertS, SuzukiN, ChowdhuryK, GrussP: New type of POU domain in germ line-specific protein Oct-4.Nature344(6265) , 435–439 (1990).
  • Okamoto K , OkazawaH, OkudaA, SakaiM, MuramatsuM, HamadaH: A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells.Cell60(3) , 461–472 (1990).
  • Palmieri SL , PeterW, HessH, ScholerHR: Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation.Dev. Biol.166(1) , 259–267 (1994).
  • Chambers I , SmithA: Self-renewal of teratocarcinoma and embryonic stem cells.Oncogene23(43) , 7150–7160 (2004).
  • Mitsui K , TokuzawaY, ItohHet al.: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell113(5) , 631–642 (2003).
  • Avilion AA , NicolisSK, PevnyLH, PerezL, VivianN, Lovell-BadgeR: Multipotent cell lineages in early mouse development depend on SOX2 function.Genes Dev.17(1) , 126–140 (2003).
  • Ambrosetti DC , ScholerHR, DaileyL, BasilicoC: Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer.J. Biol. Chem.275(30) , 23387–23397 (2000).
  • Masui S , NakatakeY, ToyookaYet al.: Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells.Nat. Cell Biol.9(6) , 625–635 (2007).
  • Chambers I , SilvaJ, ColbyDet al.: Nanog safeguards pluripotency and mediates germline development.Nature450(7173) , 1230–1234 (2007).
  • Silva J , NicholsJ, TheunissenTWet al.: Nanog is the gateway to the pluripotent ground state.Cell138(4) , 722–737 (2009).
  • Boyer LA , LeeTI, ColeMFet al.: Core transcriptional regulatory circuitry in human embryonic stem cells.Cell122(6) , 947–956 (2005).
  • Loh YH , WuQ, ChewJLet al.: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.Nat. Genet.38(4) , 431–440 (2006).
  • Smith SB , WatadaH, ScheelDW, MrejenC, GermanMS: Autoregulation and maturity onset diabetes of the young transcription factors control the human PAX4 promoter.J. Biol. Chem.275(47) , 36910–36919 (2000).
  • Laffitte BA , JosephSB, WalczakRet al.: Autoregulation of the human liver X receptor α promoter.Mol. Cell Biol.21(22) , 7558–7568 (2001).
  • Thayer MJ , TapscottSJ, DavisRL, WrightWE, LassarAB, WeintraubH: Positive autoregulation of the myogenic determination gene MyoD1.Cell58(2) , 241–248 (1989).
  • Kielbasa SM , VingronM: Transcriptional autoregulatory loops are highly conserved in vertebrate evolution.PLoS ONE3(9) , e3210 (2008).
  • Odom DT , DowellRD, JacobsenESet al.: Core transcriptional regulatory circuitry in human hepatocytes.Mol. Syst. Biol.2 , 2006.0017 (2006).
  • Marson A , LevineSS, ColeMFet al.: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells.Cell134(3) , 521–533 (2008).
  • Chen X , XuH, YuanPet al.: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells.Cell133(6) , 1106–1117 (2008).
  • Chew JL , LohYH, ZhangWet al.: Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells.Mol. Cell Biol.25(14) , 6031–6046 (2005).
  • Matoba R , NiwaH, MasuiSet al.: Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling.PLoS ONE1 , e26 (2006).
  • Sharov AA , MasuiS, SharovaLVet al.: Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data.BMC Genomics9 , 269 (2008).
  • Zhang J , TamWL, TongGQet al.: Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1.Nat. Cell Biol.8(10) , 1114–1123 (2006).
  • Wu Q , ChenX, ZhangJet al.: Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells.J. Biol. Chem.281(34) , 24090–24094 (2006).
  • Lim CY , TamWL, ZhangJet al.: Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages.Cell Stem Cell3(5) , 543–554 (2008).
  • Yang J , ChaiL, FowlesTCet al.: Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells.Proc. Natl Acad. Sci. USA105(50) , 19756–19761 (2008).
  • Kim J , ChuJ, ShenX, WangJ, OrkinSH: An extended transcriptional network for pluripotency of embryonic stem cells.Cell132(6) , 1049–1061 (2008).
  • Ivanova N , DobrinR, LuRet al.: Dissecting self-renewal in stem cells with RNA interference.Nature442(7102) , 533–538 (2006).
  • Zhang X , ZhangJ, WangT, EstebanMA, PeiD: Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells.J. Biol. Chem.283(51) , 35825–35833 (2008).
  • Jiang J , ChanYS, LohYHet al.: A core Klf circuitry regulates self-renewal of embryonic stem cells.Nat. Cell Biol.10(3) , 353–360 (2008).
  • Tam WL , LimCY, HanJet al.: T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways.Stem Cells26(8) , 2019–2031 (2008).
  • Cole MF , JohnstoneSE, NewmanJJ, KageyMH, YoungRA: Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells.Genes Dev.22(6) , 746–755 (2008).
  • Smith AG : Embryo-derived stem cells: of mice and men.Annu. Rev. Cell Dev. Biol.17 , 435–462 (2001).
  • Okita K , YamanakaS: Intracellular signaling pathways regulating pluripotency of embryonic stem cells.Curr. Stem Cell Res. Ther.1(1) , 103–111 (2006).
  • Sato N , MeijerL, SkaltsounisL, GreengardP, BrivanlouAH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor.Nat. Med.10(1) , 55–63 (2004).
  • Smith SK , Charnock-JonesDS, SharkeyAM: The role of leukemia inhibitory factor and interleukin-6 in human reproduction.Hum. Reprod.13(Suppl. 3) , 237–243; discussion 244–236 (1998).
  • Williams RL , HiltonDJ, PeaseSet al.: Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells.Nature336(6200) , 684–687 (1988).
  • Ying QL , NicholsJ, ChambersI, SmithA: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3.Cell115(3) , 281–292 (2003).
  • Lluis F , PedoneE, PepeS, CosmaMP: Periodic activation of Wnt/β-catenin signaling enhances somatic cell reprogramming mediated by cell fusion.Cell Stem Cell3(5) , 493–507 (2008).
  • Maherali N , HochedlingerK: TGFβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc.Curr. Biol.19(20) , 1718–1723 (2009).
  • Silva J , BarrandonO, NicholsJ, KawaguchiJ, TheunissenTW, SmithA: Promotion of reprogramming to ground state pluripotency by signal inhibition.PLoS Biol.6(10) , e253 (2008).
  • Guenther MG , LevineSS, BoyerLA, JaenischR, YoungRA: A chromatin landmark and transcription initiation at most promoters in human cells.Cell130(1) , 77–88 (2007).
  • Zeitlinger J , StarkA, KellisMet al.: RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo.Nat. Genet.39(12) , 1512–1516 (2007).
  • Rahl PB , LinCY, SeilaACet al.: c-Myc regulates transcriptional pause release.Cell141(3) , 432–445 (2010).
  • Muse GW , GilchristDA, NechaevSet al.: RNA polymerase is poised for activation across the genome.Nat. Genet.39(12) , 1507–1511 (2007).
  • Berger SL : The complex language of chromatin regulation during transcription.Nature447(7143) , 407–412 (2007).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Lee TI , JennerRG, BoyerLAet al.: Control of developmental regulators by Polycomb in human embryonic stem cells.Cell125(2) , 301–313 (2006).
  • Barski A , CuddapahS, CuiKet al.: High-resolution profiling of histone methylations in the human genome.Cell129(4) , 823–837 (2007).
  • Pan G , TianS, NieJet al.: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.Cell Stem Cell1(3) , 299–312 (2007).
  • Bernstein BE , MikkelsenTS, XieXet al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell125(2) , 315–326 (2006).
  • Zhao XD , HanX, ChewJLet al.: Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells.Cell Stem Cell1(3) , 286–298 (2007).
  • Mikkelsen TS , KuM, JaffeDBet al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Nature448(7153) , 553–560 (2007).
  • Meissner A , MikkelsenTS, GuHet al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Mikkelsen TS , HannaJ, ZhangXet al.: Dissecting direct reprogramming through integrative genomic analysis.Nature454(7200) , 49–55 (2008).
  • Smith E , ShilatifardA: The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes.Mol. Cell.40(5) , 689–701 (2010).
  • Gardner KE , AllisCD, StrahlBD: Operating on chromatin, a colorful language where context matters.J. Mol. Biol.409(1) , 36–46 (2011).
  • Pardo M , LangB, YuLet al.: An expanded Oct4 interaction network: implications for stem cell biology, development, and disease.Cell Stem Cell6(4) , 382–395 (2010).
  • Van Den Berg DL , SnoekT, MullinNPet al.: An Oct4-centered protein interaction network in embryonic stem cells.Cell Stem Cell6(4) , 369–381 (2010).
  • Hemberger M , DeanW, ReikW: Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington‘s canal.Nat. Rev. Mol. Cell Biol.10(8) , 526–537 (2009).
  • Yang XJ , SetoE: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men.Nat. Rev. Mol. Cell Biol.9(3) , 206–218 (2008).
  • Cunliffe VT : Eloquent silence: developmental functions of class I histone deacetylases.Curr. Opin. Genet. Dev.18(5) , 404–410 (2008).
  • Fazzio TG , HuffJT, PanningB: An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity.Cell134(1) , 162–174 (2008).
  • Zhong X , JinY: Critical roles of coactivator p300 in mouse embryonic stem cell differentiation and Nanog expression.J. Biol. Chem.284(14) , 9168–9175 (2009).
  • Chia NY , ChanYS, FengBet al.: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity.Nature468(7321) , 316–320 (2010).
  • Visel A , BlowMJ, LiZet al.: ChIP-seq accurately predicts tissue-specific activity of enhancers.Nature457(7231) , 854–858 (2009).
  • Rada-Iglesias A , BajpaiR, SwigutT, BrugmannSA, FlynnRA, WysockaJ: A unique chromatin signature uncovers early developmental enhancers in humans.Nature470(7333) , 279–283 (2010).
  • Creyghton MP , ChengAW, WelsteadGGet al.: Histone H3K27ac separates active from poised enhancers and predicts developmental state.Proc. Natl Acad. Sci. USA107(50) , 21931–21936 (2010).
  • Heintzman ND , HonGC, HawkinsRDet al.: Histone modifications at human enhancers reflect global cell-type-specific gene expression.Nature459(7243) , 108–112 (2009).
  • Liang J , WanM, ZhangYet al.: Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells.Nat. Cell Biol.10(6) , 731–739 (2008).
  • Yuri S , FujimuraS, NimuraKet al.: Sall4 is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression.Stem Cells27(4) , 796–805 (2009).
  • Lu J , JeongHW, KongNet al.: Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex.PLoS ONE4(5) , e5577 (2009).
  • Lauberth SM , RauchmanM: A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex.J. Biol. Chem.281(33) , 23922–23931 (2006).
  • Kaji K , CaballeroIM, MacleodR, NicholsJ, WilsonVA, HendrichB: The NuRD component Mbd3 is required for pluripotency of embryonic stem cells.Nat. Cell Biol.8(3) , 285–292 (2006).
  • Kaji K , NicholsJ, HendrichB: Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells.Development134(6) , 1123–1132 (2007).
  • Lagger S , MeunierD, MikulaMet al.: Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans.EMBO J.29(23) , 3992–4007 (2010).
  • Dovey OM , FosterCT, CowleySM: Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation.Proc. Natl Acad. Sci. USA107(18) , 8242–8247 (2010).
  • Pietersen AM , Van Lohuizen M: Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol.20(2) , 201–207 (2008).
  • Schuettengruber B , CavalliG: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice.Development136(21) , 3531–3542 (2009).
  • Lewis EB : A gene complex controlling segmentation in Drosophila.Nature276(5688) , 565–570 (1978).
  • Schuettengruber B , GanapathiM, LeblancBet al.: Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos.PLoS Biol.7(1) , e13 (2009).
  • Schwartz YB , PirrottaV: Polycomb complexes and epigenetic states.Curr. Opin. Cell Biol.20(3) , 266–273 (2008).
  • Kerppola TK : Polycomb group complexes – many combinations, many functions.Trends Cell Biol.19(12) , 692–704 (2009).
  • Leeb M , PasiniD, NovatchkovaM, JaritzM, HelinK, WutzA: Polycomb complexes act redundantly to repress genomic repeats and genes.Genes Dev.24(3) , 265–276 (2010).
  • O‘Carroll D , ErhardtS, PaganiM, BartonSC, SuraniMA, JenuweinT: The polycomb-group gene Ezh2 is required for early mouse development.Mol. Cell Biol.21(13) , 4330–4336 (2001).
  • Wang J , MagerJ, SchnedierE, MagnusonT: The mouse PcG gene Eed is required for Hox gene repression and extraembryonic development.Mamm. Genome13(9) , 493–503 (2002).
  • Voncken JW , RoelenBA, RoefsMet al.: Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition.Proc. Natl Acad. Sci. USA100(5) , 2468–2473 (2003).
  • Cao R , WangL, WangHet al.: Role of histone H3 lysine 27 methylation in Polycomb-group silencing.Science298(5595) , 1039–1043 (2002).
  • Cao R , ZhangY: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex.Mol. Cell.15(1) , 57–67 (2004).
  • Czermin B , MelfiR, MccabeD, SeitzV, ImhofA, PirrottaV: Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites.Cell111(2) , 185–196 (2002).
  • Kirmizis A , BartleySM, KuzmichevAet al.: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27.Genes Dev.18(13) , 1592–1605 (2004).
  • Kuzmichev A , NishiokaK, Erdjument-BromageH, TempstP, ReinbergD: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein.Genes Dev.16(22) , 2893–2905 (2002).
  • Muller J , HartCM, FrancisNJet al.: Histone methyltransferase activity of a Drosophila Polycomb group repressor complex.Cell111(2) , 197–208 (2002).
  • De Napoles M , MermoudJE, WakaoRet al.: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation.Dev. Cell7(5) , 663–676 (2004).
  • Simon JA , KingstonRE: Mechanisms of polycomb gene silencing: knowns and unknowns.Nat. Rev. Mol. Cell Biol.10(10) , 697–708 (2009).
  • Wang H , WangL, Erdjument-BromageHet al.: Role of histone H2A ubiquitination in Polycomb silencing.Nature431(7010) , 873–878 (2004).
  • Surface LE , ThorntonSR, BoyerLA: Polycomb group proteins set the stage for early lineage commitment.Cell Stem Cell7(3) , 288–298 (2010).
  • Shen X , KimW, FujiwaraYet al.: Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells.Cell139(7) , 1303–1314 (2009).
  • Pasini D , CloosPA, WalfridssonJet al.: JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells.Nature464(7286) , 306–310 (2010).
  • Peng JC , ValouevA, SwigutTet al.: Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells.Cell139(7) , 1290–1302 (2009).
  • Li G , MargueronR, KuM, ChambonP, BernsteinBE, ReinbergD: Jarid2 and PRC2, partners in regulating gene expression.Genes Dev.24(4) , 368–380 (2010).
  • Landeira D , SauerS, PootRet al.: Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators.Nat. Cell Biol.12(6) , 618–624 (2010).
  • Kanhere A , ViiriK, AraujoCet al.: Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2.Mol. Cell.38(5) , 675–688 (2010).
  • Zhao J , SunBK, ErwinJA, SongJJ, LeeJT: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome.Science322(5902) , 750–756 (2008).
  • Stock JK , GiadrossiS, CasanovaMet al.: Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells.Nat. Cell Biol.9(12) , 1428–1435 (2007).
  • Zhou W , ZhuP, WangJet al.: Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation.Mol. Cell.29(1) , 69–80 (2008).
  • Breiling A , TurnerBM, BianchiME, OrlandoV: General transcription factors bind promoters repressed by Polycomb group proteins.Nature412(6847) , 651–655 (2001).
  • Schneider R , BannisterAJ, MyersFA, ThorneAW, Crane-RobinsonC, KouzaridesT: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes.Nat. Cell Biol.6(1) , 73–77 (2004).
  • Bernstein BE , HumphreyEL, ErlichRLet al.: Methylation of histone H3 Lys 4 in coding regions of active genes.Proc. Natl Acad. Sci. USA99(13) , 8695–8700 (2002).
  • Santos-Rosa H , SchneiderR, BannisterAJet al.: Active genes are tri-methylated at K4 of histone H3.Nature419(6905) , 407–411 (2002).
  • Ng HH , RobertF, YoungRA, StruhlK: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity.Mol. Cell11(3) , 709–719 (2003).
  • Guenther MG , JennerRG, ChevalierBet al.: Global and Hox-specific roles for the MLL1 methyltransferase.Proc. Natl Acad. Sci. USA102(24) , 8603–8608 (2005).
  • Breen TR , HartePJ: Molecular characterization of the trithorax gene, a positive regulator of homeotic gene expression in Drosophila.Mech. Dev.35(2) , 113–127 (1991).
  • Sedkov Y , TillibS, MizrokhiL, MazoA: The bithorax complex is regulated by trithorax earlier during Drosophila embryogenesis than is the Antennapedia complex, correlating with a bithorax-like expression pattern of distinct early trithorax transcripts.Development120(7) , 1907–1917 (1994).
  • Ingham PW : trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective.Int. J. Dev. Biol.42(3) , 423–429 (1998).
  • Eissenberg JC , ShilatifardA: Histone H3 lysine 4 (H3K4) methylation in development and differentiation.Dev. Biol.339(2) , 240–249 (2009).
  • Hughes CM , Rozenblatt-RosenO, MilneTAet al.: Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus.Mol. Cell.13(4) , 587–597 (2004).
  • Krogan NJ , DoverJ, WoodAet al.: The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation.Mol. Cell.11(3) , 721–729 (2003).
  • Miller T , KroganNJ, DoverJet al.: COMPASS: a complex of proteins associated with a trithorax-related SET domain protein.Proc. Natl Acad. Sci. USA98(23) , 12902–12907 (2001).
  • Shilatifard A : Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation.Curr. Opin. Cell Biol.20(3) , 341–348 (2008).
  • Ding L , Paszkowski-RogaczM, NitzscheAet al.: A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.Cell Stem Cell4(5) , 403–415 (2009).
  • Bilodeau S , KageyMH, FramptonGM, RahlPB, YoungRA: SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state.Genes Dev.23(21) , 2484–2489 (2009).
  • Hu G , KimJ, XuQ, LengY, OrkinSH, ElledgeSJ: A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal.Genes Dev.23(7) , 837–848 (2009).
  • Kagey MH , NewmanJJ, BilodeauSet al.: Mediator and cohesin connect gene expression and chromatin architecture.Nature467(7314) , 430–435 (2010).
  • Nasmyth K , HaeringCH: Cohesin: its roles and mechanisms.Annu. Rev. Genet.43 , 525–558 (2009).
  • Wood AJ , SeversonAF, MeyerBJ: Condensin and cohesin complexity: the expanding repertoire of functions.Nat. Rev. Genet.11(6) , 391–404 (2010).
  • Liu J , KrantzID: Cornelia de Lange syndrome, cohesin, and beyond.Clin. Genet.76(4) , 303–314 (2009).
  • Malik S , RoederRG: The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.Nat. Rev. Genet.11(11) , 761–772 (2010).
  • Ho L , CrabtreeGR: Chromatin remodelling during development.Nature463(7280) , 474–484 (2010).
  • Clapier CR , CairnsBR: The biology of chromatin remodeling complexes.Annu. Rev. Biochem.78 , 273–304 (2009).
  • Gaspar-Maia A , AlajemA, PolessoFet al.: Chd1 regulates open chromatin and pluripotency of embryonic stem cells.Nature460(7257) , 863–868 (2009).
  • Bultman SJ , GebuhrTC, PanH, SvobodaP, SchultzRM, MagnusonT: Maternal BRG1 regulates zygotic genome activation in the mouse.Genes Dev.20(13) , 1744–1754 (2006).
  • Gao X , TateP, HuP, TjianR, SkarnesWC, WangZ: ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a.Proc. Natl Acad. Sci. USA105(18) , 6656–6661 (2008).
  • Guidi CJ , SandsAT, ZambrowiczBPet al.: Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice.Mol. Cell Biol.21(10) , 3598–3603 (2001).
  • Kim JK , HuhSO, ChoiHet al.: Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development.Mol. Cell Biol.21(22) , 7787–7795 (2001).
  • Lickert H , TakeuchiJK, Von Both I et al.: Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature432(7013) , 107–112 (2004).
  • Klochendler-Yeivin A , FietteL, BarraJ, MuchardtC, BabinetC, YanivM: The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression.EMBO Rep.1(6) , 500–506 (2000).
  • Ho L , JothiR, RonanJL, CuiK, ZhaoK, CrabtreeGR: An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network.Proc. Natl Acad. Sci. USA106(13) , 5187–5191 (2009).
  • Lessard JA , CrabtreeGR: Chromatin regulatory mechanisms in pluripotency.Annu. Rev. Cell Dev. Biol.26 , 503–532 (2010).
  • Singhal N , GraumannJ, WuGet al.: Chromatin-remodeling components of the BAF complex facilitate reprogramming.Cell141(6) , 943–955 (2010).
  • Bernstein BE , KamalM, Lindblad-TohKet al.: Genomic maps and comparative analysis of histone modifications in human and mouse.Cell120(2) , 169–181 (2005).
  • Boyer LA , PlathK, ZeitlingerJet al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells.Nature441(7091) , 349–353 (2006).
  • Bracken AP , DietrichN, PasiniD, HansenKH, HelinK: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions.Genes Dev.20(9) , 1123–1136 (2006).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128(4) , 669–681 (2007).
  • Guenther MG , LawtonLN, RozovskaiaTet al.: Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia.Genes Dev.22(24) , 3403–3408 (2008).
  • Schwartz S , MeshorerE, AstG: Chromatin organization marks exon-intron structure.Nat. Struct. Mol. Biol.16(9) , 990–995 (2009).
  • Kolasinska-Zwierz P , DownT, LatorreI, LiuT, LiuXS, AhringerJ: Differential chromatin marking of introns and expressed exons by H3K36me3.Nat. Genet.41(3) , 376–381 (2009).
  • Andersson R , EnrothS, Rada-IglesiasA, WadeliusC, KomorowskiJ: Nucleosomes are well positioned in exons and carry characteristic histone modifications.Genome Res.19(10) , 1732–1741 (2009).
  • Tilgner H , NikolaouC, AlthammerSet al.: Nucleosome positioning as a determinant of exon recognition.Nat. Struct. Mol. Biol.16(9) , 996–1001 (2009).
  • Luco RF , PanQ, TominagaK, BlencoweBJ, Pereira-SmithOM, MisteliT: Regulation of alternative splicing by histone modifications.Science327(5968) , 996–1000 (2010).
  • Guttman M , AmitI, GarberMet al.: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.Nature458(7235) , 223–227 (2009).
  • Azuara V , PerryP, SauerSet al.: Chromatin signatures of pluripotent cell lines.Nat. Cell Biol.8(5) , 532–538 (2006).
  • Grewal SI , JiaS: Heterochromatin revisited.Nat. Rev. Genet.8(1) , 35–46 (2007).
  • Yeap LS , HayashiK, SuraniMA: ERG-associated protein with SET domain (ESET)–Oct4 interaction regulates pluripotency and represses the trophectoderm lineage.Epigenetics Chromatin2(1) , 12 (2009).
  • Yuan P , HanJ, GuoGet al.: Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells.Genes Dev.23(21) , 2507–2520 (2009).
  • Rowe HM , JakobssonJ, MesnardDet al.: KAP1 controls endogenous retroviruses in embryonic stem cells.Nature463(7278) , 237–240 (2010).
  • Matsui T , LeungD, MiyashitaHet al.: Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET.Nature464(7290) , 927–931 (2010).
  • Tachibana M , SugimotoK, NozakiMet al.: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.Genes Dev.16(14) , 1779–1791 (2002).
  • Lehnertz B , UedaY, DerijckAAet al.: Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin.Curr. Biol.13(14) , 1192–1200 (2003).
  • Alder O , LavialF, HelnessAet al.: Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment.Development137(15) , 2483–2492 (2010).
  • Maniatis T , FalvoJV, KimTHet al.: Structure and function of the interferon-β enhanceosome.Cold Spring Harb. Symp. Quant. Biol.63 , 609–620 (1998).
  • Levine M , TjianR: Transcription regulation and animal diversity.Nature424(6945) , 147–151 (2003).
  • Bulger M , GroudineM: Functional and mechanistic diversity of distal transcription enhancers.Cell144(3) , 327–339 (2011).
  • Kafri T , ArielM, BrandeisMet al.: Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line.Genes Dev.6(5) , 705–714 (1992).
  • Monk M , BoubelikM, LehnertS: Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development.Development99(3) , 371–382 (1987).
  • Klose RJ , BirdAP: Genomic DNA methylation: the mark and its mediators.Trends Biochem. Sci.31(2) , 89–97 (2006).
  • Okano M , BellDW, HaberDA, LiE: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell99(3) , 247–257 (1999).
  • Illingworth RS , BirdAP: CpG islands – ‘a rough guide‘.FEBS Lett.583(11) , 1713–1720 (2009).
  • Ooi SK , QiuC, BernsteinEet al.: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA.Nature448(7154) , 714–717 (2007).
  • Thomson JSP , SelfridgeJ, ClouaireTet al.: CpG islands influence chromatin structure via the CpG-binding protein Cfp1.Nature464 , 1082–1086 (2010).
  • Lister R , PelizzolaM, DowenRHet al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462(7271) , 315–322 (2009).
  • Fouse SD , ShenY, PellegriniMet al.: Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation.Cell Stem Cell2(2) , 160–169 (2008).
  • Farthing CR , FiczG, NgRKet al.: Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.PLoS Genet.4(6) , e1000116 (2008).
  • Illingworth R , KerrA, DesousaDet al.: A novel CpG island set identifies tissue-specific methylation at developmental gene loci.PLoS Biol.6(1) , e22 (2008).
  • Mohn F , WeberM, RebhanMet al.: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors.Mol. Cell.30(6) , 755–766 (2008).
  • Wilusz JE , SunwooH, SpectorDL: Long noncoding RNAs: functional surprises from the RNA world.Genes Dev.23(13) , 1494–1504 (2009).
  • Zaratiegui M , IrvineDV, MartienssenRA: Noncoding RNAs and gene silencing.Cell128(4) , 763–776 (2007).
  • Mercer TR , DingerME, MattickJS: Long non-coding RNAs: insights into functions.Nat. Rev. Genet.10(3) , 155–159 (2009).
  • Pauli A , RinnJL, SchierAF: Non-coding RNAs as regulators of embryogenesis.Nat. Rev. Genet.12(2) , 136–149 (2011).
  • Bartel DP : MicroRNAs: target recognition and regulatory functions.Cell136(2) , 215–233 (2009).
  • Kanellopoulou C , MuljoSA, KungALet al.: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing.Genes Dev.19(4) , 489–501 (2005).
  • Murchison EP , PartridgeJF, TamOH, CheloufiS, HannonGJ: Characterization of Dicer-deficient murine embryonic stem cells.Proc. Natl Acad. Sci. USA102(34) , 12135–12140 (2005).
  • Wang Y , MedvidR, MeltonC, JaenischR, BlellochR: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal.Nat. Genet.39(3) , 380–385 (2007).
  • Barroso-Deljesus A , Romero-LopezC, Lucena-AguilarGet al.: Embryonic stem cell-specific miR302–367 cluster: human gene structure and functional characterization of its core promoter.Mol. Cell Biol.28(21) , 6609–6619 (2008).
  • Card DA , HebbarPB, LiLet al.: Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells.Mol. Cell Biol.28(20) , 6426–6438 (2008).
  • Sinkkonen L , HugenschmidtT, BerningerPet al.: MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells.Nat. Struct. Mol. Biol.15(3) , 259–267 (2008).
  • Benetti R , GonzaloS, JacoIet al.: A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases.Nat. Struct. Mol. Biol.15(3) , 268–279 (2008).
  • Tay Y , ZhangJ, ThomsonAM, LimB, RigoutsosI: MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation.Nature455(7216) , 1124–1128 (2008).
  • Xu N , PapagiannakopoulosT, PanG, ThomsonJA, KosikKS: MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells.Cell137(4) , 647–658 (2009).
  • Rinn JL , KerteszM, WangJKet al.: Functional demarcation of active and silent chromatin domains in human Hox loci by noncoding RNAs.Cell129(7) , 1311–1323 (2007).
  • Pandey RR , MondalT, MohammadFet al.: Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation.Mol. Cell.32(2) , 232–246 (2008).
  • Yap KL , LiS, Munoz-CabelloAMet al.: Molecular Interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.Mol. Cell38(5) , 662–674 (2010).
  • Gupta RA , ShahN, WangKCet al.: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.Nature464(7291) , 1071–1076 (2010).
  • Khalil AM , GuttmanM, HuarteMet al.: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.Proc. Natl Acad. Sci. USA106(28) , 11667–11672 (2009).
  • Tsai MC , ManorO, WanYet al.: Long noncoding RNA as modular scaffold of histone modification complexes.Science329(5992) , 689–693 (2010).
  • Core LJ , WaterfallJJ, LisJT: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters.Science322(5909) , 1845–1848 (2008).
  • He Y , VogelsteinB, VelculescuVE, PapadopoulosN, KinzlerKW: The antisense transcriptomes of human cells.Science322(5909) , 1855–1857 (2008).
  • Seila AC , CalabreseJM, LevineSSet al.: Divergent transcription from active promoters.Science322(5909) , 1849–1851 (2008).
  • Guenther MG , YoungRA: Repressive transcription.Science329(5988) , 150–151 (2010).
  • Takahashi K , YamanakaS: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell126(4) , 663–676 (2006).
  • Yamanaka S , BlauHM: Nuclear reprogramming to a pluripotent state by three approaches.Nature465(7299) , 704–712 (2010).
  • Saha K , JaenischR: Technical challenges in using human induced pluripotent stem cells to model disease.Cell Stem Cell5(6) , 584–595 (2009).
  • Kiskinis E , EgganK: Progress toward the clinical application of patient-specific pluripotent stem cells.J. Clin. Invest.120(1) , 51–59 (2010).
  • Smith KP , LuongMX, SteinGS: Pluripotency: toward a gold standard for human ES and iPS cells.J. Cell Physiol.220(1) , 21–29 (2009).
  • Hanna JH , SahaK, JaenischR: Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues.Cell143(4) , 508–525 (2010).
  • Okita K , IchisakaT, YamanakaS: Generation of germline-competent induced pluripotent stem cells.Nature448(7151) , 313–317 (2007).
  • Kang L , WangJ, ZhangY, KouZ, GaoS: iPS cells can support full-term development of tetraploid blastocyst-complemented embryos.Cell Stem Cell5(2) , 135–138 (2009).
  • Boland MJ , HazenJL, NazorKLet al.: Adult mice generated from induced pluripotent stem cells.Nature461(7260) , 91–94 (2009).
  • Wernig M , MeissnerA, ForemanRet al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.Nature448(7151) , 318–324 (2007).
  • Zhao XY , LiW, LvZet al.: iPS cells produce viable mice through tetraploid complementation.Nature461(7260) , 86–90 (2009).
  • Hu BY , WeickJP, YuJet al.: Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency.Proc. Natl Acad. Sci. USA107(9) , 4335–4340 (2010).
  • Feng Q , LuSJ, KlimanskayaIet al.: Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence.Stem Cells28(4) , 704–712 (2010).
  • Nakagawa M , KoyanagiM, TanabeKet al.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.Nat. Biotechnol.26(1) , 101–106 (2008).
  • Yu J , VodyanikMA, Smuga-OttoKet al.: Induced pluripotent stem cell lines derived from human somatic cells.Science318(5858) , 1917–1920 (2007).
  • Wernig M , MeissnerA, CassadyJP, JaenischR: c-Myc is dispensable for direct reprogramming of mouse fibroblasts.Cell Stem Cell2(1) , 10–12 (2008).
  • Stadtfeld M , HochedlingerK: Induced pluripotency: history, mechanisms, and applications.Genes Dev.24(20) , 2239–2263 (2010).
  • Shi Y , DespontsC, DoJT, HahmHS, ScholerHR, DingS: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds.Cell Stem Cell3(5) , 568–574 (2008).
  • Heng JC , FengB, HanJet al.: The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells.Cell Stem Cell6(2) , 167–174 (2010).
  • Hockemeyer D , SoldnerF, CookEG, GaoQ, MitalipovaM, JaenischR: A drug-inducible system for direct reprogramming of human somatic cells to pluripotency.Cell Stem Cell3(3) , 346–353 (2008).
  • Wernig M , LengnerCJ, HannaJet al.: A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types.Nat. Biotechnol.26(8) , 916–924 (2008).
  • Maherali N , AhfeldtT, RigamontiA, UtikalJ, CowanC, HochedlingerK: A high-efficiency system for the generation and study of human induced pluripotent stem cells.Cell Stem Cell3(3) , 340–345 (2008).
  • Sridharan R , TchieuJ, MasonMJet al.: Role of the murine reprogramming factors in the induction of pluripotency.Cell136(2) , 364–377 (2009).
  • Huangfu D , MaehrR, GuoWet al.: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds.Nat. Biotechnol.26(7) , 795–797 (2008).
  • Huangfu D , OsafuneK, MaehrRet al.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2.Nat. Biotechnol.26(11) , 1269–1275 (2008).
  • Shi Y , DoJT, DespontsC, HahmHS, ScholerHR, DingS: A combined chemical and genetic approach for the generation of induced pluripotent stem cells.Cell Stem Cell2(6) , 525–528 (2008).
  • Marson A , ForemanR, ChevalierBet al.: Wnt signaling promotes reprogramming of somatic cells to pluripotency.Cell Stem Cell3(2) , 132–135 (2008).
  • Judson RL , BabiarzJE, VenereM, BlellochR: Embryonic stem cell-specific microRNAs promote induced pluripotency.Nat. Biotechnol.27(5) , 459–461 (2009).
  • Loewer S , CabiliMN, GuttmanMet al.: Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.Nat. Genet.42(12) , 1113–1117 (2010).
  • Chin MH , MasonMJ, XieWet al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures.Cell Stem Cell5(1) , 111–123 (2009).
  • Guenther MG , FramptonGM, SoldnerFet al.: Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells.Cell Stem Cell7(2) , 249–257 (2010).
  • Soldner F , HockemeyerD, BeardCet al.: Parkinson‘s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors.Cell136(5) , 964–977 (2009).
  • Gidekel S , BergmanY: A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element.J. Biol. Chem.277(37) , 34521–34530 (2002).
  • Siegfried Z , EdenS, MendelsohnM, FengX, TsuberiBZ, CedarH: DNA methylation represses transcription in vivo.Nat. Genet.22(2) , 203–206 (1999).
  • Popp C , DeanW, FengSet al.: Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency.Nature463(7284) , 1101–1105 (2010).
  • Bhutani N , BradyJJ, DamianM, SaccoA, CorbelSY, BlauHM: Reprogramming towards pluripotency requires AID-dependent DNA demethylation.Nature463(7284) , 1042–1047 (2010).
  • Kim K , DoiA, WenBet al.: Epigenetic memory in induced pluripotent stem cells.Nature467(7313) , 285–290 (2010).
  • Doi A , ParkIH, WenBet al.: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts.Nat. Genet.41(12) , 1350–1353 (2009).
  • Miura K , OkadaY, AoiTet al.: Variation in the safety of induced pluripotent stem cell lines.Nat. Biotechnol.27(8) , 743–745 (2009).
  • Lister R , PelizzolaM, KidaYSet al.: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.Nature471(7336) , 68–73 (2011).
  • Bock C , KiskinisE, VerstappenGet al.: Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines.Cell144(3) , 439–452 (2011).
  • Wilson KD , VenkatasubrahmanyamS, JiaF, SunN, ButteAJ, WuJC: MicroRNA profiling of human-induced pluripotent stem cells.Stem Cells Dev.18(5) , 749–758 (2009).
  • Marchetto MC , YeoGW, KainohanaO, MarsalaM, GageFH, MuotriAR: Transcriptional signature and memory retention of human-induced pluripotent stem cells.PLoS ONE4(9) , e7076 (2009).
  • Chin MH , PellegriniM, PlathK, LowryWE: Molecular analyses of human induced pluripotent stem cells and embryonic stem cells.Cell Stem Cell7(2) , 263–269 (2010).
  • Ghosh Z , WilsonKD, WuY, HuS, QuertermousT, WuJC: Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.PLoS ONE5(2) , e8975 (2010).
  • Newman AM , CooperJB: Lab-specific gene expression signatures in pluripotent stem cells.Cell Stem Cell7(2) , 258–262 (2010).
  • Stadtfeld M , ApostolouE, AkutsuHet al.: Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.Nature465(7295) , 175–181 (2010).
  • Liu L , LuoGZ, YangWet al.: Activation of the imprinted Dlk1–Dio3 region correlates with pluripotency levels of mouse stem cells.J. Biol. Chem.285(25) , 19483–19490 (2010).
  • Bonasio R , TuS, ReinbergD: Molecular signals of epigenetic states.Science330(6004) , 612–616 (2010).
  • Berger SL , KouzaridesT, ShiekhattarR, ShilatifardA: An operational definition of epigenetics.Genes Dev.23(7) , 781–783 (2009).
  • Lengner CJ , GimelbrantAA, CheungWAet al.: Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations.Cell141(5) , 872–883 (2010).
  • Nakamura T , AraiY, UmeharaHet al.: PGC7/Stella protects against DNA demethylation in early embryogenesis.Nat. Cell Biol.9(1) , 64–71 (2007).
  • Singh AM , HamazakiT, HankowskiKE, TeradaN: A heterogeneous expression pattern for Nanog in embryonic stem cells.Stem Cells25(10) , 2534–2542 (2007).
  • Graf T , StadtfeldM: Heterogeneity of embryonic and adult stem cells.Cell Stem Cell3(5) , 480–483 (2008).
  • Hayashi K , LopesSM, TangF, SuraniMA: Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states.Cell Stem Cell3(4) , 391–401 (2008).
  • Wray J , KalkanT, SmithAG: The ground state of pluripotency.Biochem. Soc. Trans.38 , 1027–1032 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.