279
Views
0
CrossRef citations to date
0
Altmetric
Review

Developmental Plasticity and Epigenetic Mechanisms Underpinning Metabolic and Cardiovascular Diseases

, &
Pages 279-294 | Published online: 30 Jun 2011

Bibliography

  • Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447 , 661–678 (2007).
  • Wellcome Trust Case Control Consortium: Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature464 , 713–720 (2010).
  • Lango H , PalmerCNA, MorrisADet al.: Assessing the combined impact of 18 common genetic variants of modest effect sizes on Type 2 diabetes risk.Diabetes57 , 3129–3135 (2008).
  • Kermack W , McKendrickA, McKinlayP: Death rates in Great Britain and Sweden: some general regularities and their significance.Lancet223 , 698–703 (1934).
  • Plagemann A : Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity.Physiol. Behav.86 , 661–668 (2005).
  • De Prins FA , Van Assche FA: Intrauterine growth retardation and development of endocrine pancreas in the experimental rat. Biol. Neonat.41 , 16–21 (1982).
  • Barker DJP , OsmondC, GoldingJ, KuhD, WadsworthME: Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease.BMJ298 , 564–567 (1989).
  • Godfrey K : The ‘developmental origins‘ hypothesis: epidemiology. In: Developmental Origins of Health and Disease. Gluckman PD, Hanson MA (Eds). Cambridge University Press, Cambridge, UK, 6–32 (2006).
  • Gluckman PD , HansonMA: Developmental Origins of Health and Disease. Cambridge University Press, Cambridge, UK (2006).
  • Hales CN , BarkerDJ: Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis.Diabetologia35 , 595–601 (1992).
  • Gluckman PD , HansonMA, BuklijasT: A conceptual framework for the developmental origins of health and disease.J. Dev. Orig. Health Dis.1 , 6–18 (2010).
  • Godfrey KM , GluckmanPD, HansonMA: Developmental origins of metabolic disease: life course and intergenerational perspectives.Trends Endocrinol. Metab.21 , 199–205 (2010).
  • Horton TH : Fetal origins of developmental plasticity: animal models of induced life history variation.Am. J. Hum. Biol.17 , 34–43 (2005).
  • Bhutta AT , ClevesMA, CaseyPH, CradockMM, AnandKJS: Cognitive and behavioral outcomes of school-aged children who were born preterm.JAMA288 , 728–737 (2002).
  • Gluckman PD , HansonMA, SpencerHG: Predictive adaptive responses and human evolution.Trends Ecol. Evol.20 , 527–533 (2005).
  • Lee TM , ZuckerI: Vole infant development is influences perinatally by maternal photoperiodic history.Am. J. Physiol.255 , R831–R838 (1988).
  • Bateson P , GluckmanP: Plasticity, Robustness, Development and Evolution. Cambridge University Press, Cambridge, UK (2011) (In Press).
  • Gluckman PD , HansonMA: The Fetal Matrix: Evolution, Development, and Disease. Cambridge University Press, Cambridge, UK (2005).
  • Gluckman PD , HansonMA, BeedleAS: Early life events and their consequences for later disease: a life history and evolutionary perspective.Am. J. Hum. Biol.19 , 1–19 (2007).
  • Vickers MH , BreierBH, CutfieldWS, HofmanPL, GluckmanPD: Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition.Am. J. Physiol.279 , E83–E87 (2000).
  • Vickers MH , BreierBH, McCarthyD, GluckmanPD: Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition.Am. J. Physiol.285 , R271–R273 (2003).
  • Vickers MH , GluckmanPD, CovenyAHet al.: Neonatal leptin treatment reverses developmental programming.Endocrinology146 , 4211–4216 (2005).
  • Jahoor F , BadalooA, ReidM, ForresterT: Unique metabolic characteristics of the major syndromes of severe childhood malnutrition. In: The Tropical Metabolism Research Unit, The University of the West Indies, Jamaica 1956–2006: The House that John Built. Forrester T, Picou D, Walker S (Eds.). Ian Randle Publishers, Kingston, Jamaica, 23–60 (2006).
  • Gluckman PD , BeedleAS, HansonMA: Principles of Evolutionary Medicine. Oxford University Press, Oxford, UK, (2009).
  • Moore SE , ColeTJ, CollinsonACet al.: Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa.Int. J. Epidemiol.28 , 1088–1095 (1999).
  • Jablonka E , ObornyB, MolnarIet al.: The adaptive advantage of phenotypic memory in changing environments.Philos. Trans. R. Soc. Lond. B Biol. Sci.350 , 133–141 (1995).
  • Sultan SE , SpencerHG: Metapopulation structure favors plasticity over local adaptation.Am. Nat.160 , 271–283 (2002).
  • Gluckman PD , HansonMA: Maternal constraint of fetal growth and its consequences.Semin. Fet. Neonat. Med.9 , 419–425 (2004).
  • Waddington CH : Organisers and Genes. Cambridge University Press, Cambridge, UK (1940).
  • Ptashne M : On the use of the word ‘epigenetic‘.Curr. Biol.17 , R233–R236 (2007).
  • Jones PA : The DNA methylation paradox.Trends Genet.15 , 34–37 (1999).
  • Lorincz MC , DickersonDR, SchmittM, GroudineM: Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells.Nat. Struct. Mol. Biol.11 , 1068–1075 (2004).
  • Aran D , ToperoffG, RosenbergM, HellmanA: Replication timing-related and gene body-specific methylation of active human genes.Hum. Mol. Genet.20(4) , 670–680 (2011).
  • Chahrour M , JungSY, ShawCet al.: MeCP2, a key contributor to neurological disease, activates and represses transcription.Science320 , 1224–1229 (2008).
  • Lister R , PelizzolaM, DowenRHet al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462 , 315–322 (2009).
  • Ji H , EhrlichLIR, SeitaJet al.: Comprehensive methylome map of lineage commitment from haematopoietic progenitors.Nature467 , 338–342 (2010).
  • Münzel M , GlobischD, BrücklTet al.: Quantification of the sixth DNA base hydroxymethylcytosine in the brain.Angew. Chem. Int. Ed. Engl.49 , 5375–5377 (2010).
  • Shilatifard A : Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation.Curr. Op. Cell Biol.20 , 341–348 (2008).
  • Ray-Gallet D , AlmouzniG: Mixing or not mixing.Science328 , 56–57 (2010).
  • McEwen K , Ferguson-SmithA: Distinguishing epigenetic marks of developmental and imprinting regulation.Epigenetics Chromatin3(1) , 2 (2010).
  • Ørom UA , DerrienT, BeringerMet al.: Long noncoding RNAs with enhancer-like function in human cells.Cell143 , 46–58 (2010).
  • Guo H , IngoliaNT, WeissmanJS, BartelDP: Mammalian microRNAs predominantly act to decrease target mRNA levels.Nature466 , 835–840 (2010).
  • Mattick JS : RNA as the substrate for epigenome–environment interactions.Bioessays32 , 548–552 (2010).
  • Mattick JS , AmaralPP, DingerME, MercerTR, MehlerMF: RNA regulation of epigenetic processes.Bioessays31 , 51–59 (2009).
  • Amaral PP , MattickJS: Noncoding RNA in development.Mamm. Genome19 , 454–492 (2008).
  • Handel AE , EbersGC, RamagopalanSV: Epigenetics: molecular mechanisms and implications for disease.Trends Mol. Med.16 , 7–16 (2009).
  • Kanka J : Gene expression and chromatin structure in the pre-implantation embryo.Theriogenology59 , 3–19 (2003).
  • Schmitz K -M, Mayer C, Postepska A, Grummt I: Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Devel.24 , 2264–2269 (2010).
  • McMullen S , MostynA: Animal models for the study of the developmental origins of health and disease.Proc. Nutr. Soc.68 , 306–320 (2009).
  • Waterland RA , MichelsKB: Epigenetic epidemiology of the developmental origins hypothesis.Annu. Rev. Nutr.27 , 363–388 (2007).
  • Gluckman PD , LillycropKA, VickersMHet al.: Metabolic plasticity during mammalian development is directionally dependent on early nutritional status.Proc. Natl Acad. Sci. USA104 , 12796–12800 (2007).
  • Lillycrop KA , HansonMA, BurdgeGC: Epigenetics and the influence of maternal diet. In: Early Life Origins of Human Health and Disease. Newnham JP, Ross MG (Eds). Karger, Basel, Switzerland, 11–20 (2009).
  • Lillycrop KA , PhillipsES, JacksonAA, HansonMA, BurdgeGC: Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring.J. Nutr.135 , 1382–1386 (2005).
  • van Straten EME , BloksVW, HuijkmanNCAet al.: The liver X-receptor (LXR) gene promoter is hypermethylated in a mouse model of prenatal protein restriction.Am. J. Physiol. Regul. Integr. Comp. Physiol.298 , R275–R282 (2009).
  • Goyal R , GoyalD, LeitzkeA, GheorgheCP, LongoLD: Brain renin–angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy.Reprod. Sci.17 , 227–238 (2010).
  • Lillycrop KA , Slater-JefferiesJL, HansonMAet al.: Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications.Br. J. Nutr.97 , 1064–1073 (2007).
  • Nijland MJ , MitsuyaK, LiCet al.: Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability.J. Physiol.588 , 1349–1359 (2010).
  • Park JH , StoffersDA, NichollsRD, SimmonsRA: Development of Type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1.J. Clin. Invest.118 , 2316–2324 (2008).
  • Thompson RF , FazzariMJ, NiuHet al.: Experimental IUGR induces alterations in DNA methylation and gene expression in pancreatic islets of rats.J. Biol. Chem.285 , 15111–15118 (2010).
  • Villeneuve LM , ReddyMA, LantingLLet al.: Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes.Proc. Natl Acad. Sci. USA105 , 9047–9052 (2008).
  • Heijmans BT , TobiEW, LumeyLH, SlagboomPE: The epigenome: archive of the prenatal environment.Epigenetics4 , 1–6 (2009).
  • Hult M , TornhammarP, UedaPet al.: Hypertension, diabetes and overweight: looming legacies of the Biafran famine.PLoS ONE5 , e13582 (2010).
  • Heijmans BT , TobiEW, SteinADet al.: Persistent epigenetic differences associated with prenatal exposure to famine in humans.Proc. Natl Acad. Sci. USA105 , 17046–17049 (2008).
  • Tobi EW , LumeyLH, TalensRPet al.: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific.Hum. Mol. Genet.18 , 4046–4053 (2009).
  • Ling C , Del Guerra S, Lupi R et al.: Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion. Diabetologia51 , 615–622 (2008).
  • Barrès R , OslerME, YanJet al.: Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density.Cell Metab.10 , 189–198 (2009).
  • Br⊘ns C , JacobsenS, NilssonEet al.: Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner.J. Clin. Endocrinol. Metab.95 , 3048–3056 (2010).
  • Feinberg AP , IrizarryRA, FradinDet al.: Personalized epigenomic signatures that are stable over time and covary with body mass index.Sci. Transl. Med.2 , 49ra67 (2010).
  • Godfrey KM , SheppardA, GluckmanPDet al.: Epigenetic gene promoter methylation at birth is associated with child‘s later adiposity.Diabetes60(5) , 1528–1534 (2011).
  • Champagne FA : Early adversity and developmental outcomes.Perspect. Psychol. Sci.5 , 564–574 (2010).
  • Weaver ICG , CervoniN, ChampagneFAet al.: Epigenetic programming by maternal behavior.Nat. Neurosci.7 , 847–854 (2004).
  • Oberlander TF , WeinbergJ, PapsdorfMet al.: Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses.Epigenetics3 , 97–106 (2008).
  • McGowan PO , SasakiA, D‘AlessioACet al.: Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse.Nat. Neurosci.12 , 342–348 (2009).
  • Steegers-Theunissen RP , Obermann-BorstSA, KremerDet al.: Periconceptional maternal folic acid use of 400 µg per day is related to increased methylation of the IGF2 gene in the very young child.PLoS ONE4 , e7845 (2009).
  • Yajnik CS , DeshpandeSS, JacksonAAet al.: Vitamin B(12) and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study.Diabetologia51 , 29–38 (2008).
  • Poston L , HarthoornLF, Van Der Beek EM; on behalf of contributors to the ILSI Europe Workshop: Obesity in pregnancy: implications for the mother and lifelong health of the child. A consensus statement. Pediatr. Res.69 , 175–180 (2011).
  • The Hapo Study Cooperative Research Group: Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: associations with neonatal anthropometrics. Diabetes58 , 453–459 (2009).
  • Tam WH , MaRCW, YangXet al.: Glucose intolerance and cardiometabolic risk in adolescents exposed to maternal gestational diabetes.Diabetes Care33 , 1382–1384 (2010).
  • Lillycrop KA , BurdgeGC: Epigenetic changes in early life and future risk of obesity.Int. J. Obes.35 , 72–83 (2011).
  • Pettitt D , JovanovicL: The vicious cycle of diabetes and pregnancy.Curr. Diab. Rep.7 , 295–297 (2007).
  • Osgood ND , DyckRF, GrassmannWK: The inter- and intragenerational impact of gestational diabetes on the epidemic of Type 2 diabetes.Am. J. Public Health101 , 173–179 (2011).
  • Mughal MZ , EellooJ, RobertsSAet al.: Body composition and bone status of children born to mothers with type 1 diabetes mellitus.Arch. Dis. Child.95 , 281–285 (2010).
  • Bruce KD , HansonMA: The developmental origins, mechanisms, and implications of metabolic syndrome.J. Nutr.140(3) , 648–652 (2010).
  • Alkemade FE , van Vliet P, Henneman P et al.: Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. Am. J. Pathol.176 , 542–548 (2010).
  • Aagaard-Tillery KM , GroveK, BishopJet al.: Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome.J. Mol. Endocrinol.41 , 91–102 (2008).
  • Suter M , BocockP, ShowalterLet al.: Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates.FASEB J.25(2) , 714–726 (2011).
  • Zhang J , ZhangF, DidelotXet al.: Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring.BMC Genomics10 , 478 (2009).
  • Vucetic Z , KimmelJ, TotokiK, HollenbeckE, ReyesTM: Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes.Endocrinology151 , 4756–4764 (2010).
  • Waterland RA : Epigenetic epidemiology of obesity: application of epigenomic technology.Nutr. Rev.66 , S21–S23 (2008).
  • Bouchard L , ThibaultS, Guay S-P et al.: Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care33 , 2436–2441 (2010).
  • Gemma C , SookoianS, AlvarinasJet al.: Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns.Obesity17 , 1032–1039 (2009).
  • Reynolds RM , OsmondC, PhillipsDIW, GodfreyKM: Maternal BMI, parity, and pregnancy weight gain: influences on offspring adiposity in young adulthood.J. Clin. Endocrinol. Metab.95 , 5365–5369 (2010).
  • Kaati G , BygrenLO, EdvinssonS: Cardiovascular and diabetes mortality determined by nutrition during parents‘ and grandparents‘ slow growth period.Eur. J. Hum. Genet.10 , 682–688 (2002).
  • Pembrey ME , BygrenLO, KaatiGet al.: Sex-specific, male-line transgenerational responses in humans.Eur. J. Hum. Genet.14 , 159–166 (2006).
  • Painter RC , OsmondC, GluckmanPet al.: Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life.BJOG115 , 1243–1249 (2008).
  • Hitchins MP , WongJJ, SuthersGet al.: Inheritance of a cancer-associated MLH1 germ-line epimutation.N. Engl. J. Med.356 , 697–705 (2007).
  • Burdge GC , Slater-JefferiesJL, TorrensCet al.: Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations.Br. J. Nutr.97 , 435–439 (2007).
  • Drake AJ , WalkerBR: The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birthweight and cardiovascular risk.J. Endocrinol.180 , 1–16 (2004).
  • Anway MD , CuppAS, UzumcuM, SkinnerMK: Epigenetic transgenerational actions of endocrine disruptors and male fertility.Science308 , 1466–1469 (2005).
  • Guerrero-Bosagna C , SettlesM, LuckerB, SkinnerMK: Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome.PLoS ONE5 , e13100 (2010).
  • Nafee TM , FarrellWE, FryerAA, IsmailKK: Epigenetic control of fetal gene expression.BJOG115 , 158–168 (2007).
  • Hammoud SS , NixDA, ZhangHet al.: Distinctive chromatin in human sperm packages genes for embryo development.Nature460 , 473–478 (2009).
  • Nadeau JH : Transgenerational genetic effects on phenotypic variation and disease risk.Hum. Mol. Genet.18 , R202–R210 (2009).
  • Carone BR , FauquierL, HabibNet al.: Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.Cell143 , 1084–1096 (2010).
  • Ng S -F, Lin RCY, Laybutt DR et al.: Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature467 , 963–966 (2010).
  • Pentinat T , Ramon-KrauelM, CebriaJ, DiazR, Jimenez-ChillaronJC: Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition.Endocrinology151 , 5617–5623 (2010).
  • Yazbek SN , NadeauJH, BuchnerDA: Ancestral paternal genotype controls body weight and food intake for multiple generations.Hum. Mol. Genet.19 , 4134–4144 (2010).
  • Badyaev AV : Evolutionary significance of phenotypic accommodation in novel environments: an empirical test of the Baldwin effect.Phil. Trans. R. Soc. Biol. Sci.364 , 1125–1141 (2009).
  • Jablonka E , LambMJ: Epigenetic Inheritance and Evolution: The Lamarckian Dimension. Oxford University Press, New York, USA (1995).
  • Price TD , QvarnströmA, IrwinDE: The role of phenotypic plasticity in driving genetic evolution.Proc. Biol. Sci.270 , 1433–1440 (2003).
  • Pfeifer GP : Mutagenesis at methylated CpG sequences.Curr. Top. Microbiol. Immunol.301 , 259–281 (2006).
  • Duenas-Gonzalez A , CandelariaM, Perez-PlascenciaCet al.: Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors.Cancer Treat. Rev.34 , 206–222 (2008).
  • Ellis L , AtadjaPW, JohnstoneRW: Epigenetics in cancer: targeting chromatin modifications.Mol. Cancer Ther.8 , 1409–1420 (2009).
  • Ordovas JM , SmithCE: Epigenetics and cardiovascular disease.Nat. Rev. Cardiol.7 , 510–519 (2010).
  • Wyrwoll CS , MarkPJ, MoriTA, PuddeyIB, WaddellBJ: Prevention of programmed hyperleptinemia and hypertension by postnatal dietary Ω-3 fatty acids.Endocrinology147 , 599–606 (2006).
  • Raab EL , VuguinPM, StoffersDA, SimmonsRA: Neonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth retarded rats.Am. J. Physiol. Regul. Integr. Comp. Physiol.297 , R1785–R1794 (2009).
  • Bouret SG , DraperSJ, SimerlyRB: Trophic action of leptin on hypothalamic neurons that regulate feeding.Science304 , 108–110 (2004).
  • Elahi MM , CagampangFR, AnthonyFWet al.: Statin treatment in hypercholesterolemic pregnant mice reduces cardiovascular risk factors in their offspring.Hypertension51 , 939–944 (2008).
  • Bhandare R , SchugJ, Le Lay J et al.: Genome-wide analysis of histone modifications in human pancreatic islets. Genome Res.20 , 428–433 (2010).
  • Griffiths-Jones S , SainiHK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res.36 , D154–D158 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.