417
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Mechanisms in Memory and Synaptic Function

&
Pages 157-181 | Published online: 20 Apr 2011

Bibliography

  • Sweatt JD : Mechanisms of Memory. Elsevier, Burlington, MA, USA (2010).
  • Abel T , LattalKM: Molecular mechanisms of memory acquisition, consolidation and retrieval.Curr. Opin. Neurobiol.11(2) , 180–187 (2001).
  • Alberini CM : Transcription factors in long-term memory and synaptic plasticity.Physiol. Rev.89(1) , 121–145 (2009).
  • Stevens CF : CREB and memory consolidation.Neuron13(4) , 769–770 (1994).
  • Bailey CH , KandelER, SiK: The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth.Neuron44(1) , 49–57 (2004).
  • Roberson ED , SweattJD: A biochemical blueprint for long-term memory.Learn Mem.6(4) , 381–388 (1999).
  • Price JC , GuanS, BurlingameA, PrusinerSB, GhaemmaghamiS: Analysis of proteome dynamics in the mouse brain.Proc. Natl Acad. Sci. USA107(32) , 14508–14513 (2010).
  • Archibald K , PerryMJ, MolnarE, HenleyJM: Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells.Neuropharmacology37(10–11) , 1345–1353 (1998).
  • Silva AJ , StevensCF, TonegawaS, WangY: Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice.Science257(5067) , 201–206 (1992).
  • Berger SL , KouzaridesT, ShiekhattarR, ShilatifardA: An operational definition of epigenetics.Genes Dev.23(7) , 781–783 (2009).
  • Price TD , QvarnstromA, IrwinDE: The role of phenotypic plasticity in driving genetic evolution.Proc. Biol. Sci.270(1523) , 1433–1440 (2003).
  • Bird A : Perceptions of epigenetics.Nature447(7143) , 396–398 (2007).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Brownell JE , ZhouJ, RanalliTet al.: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation.Cell84(6) , 843–851 (1996).
  • Taunton J , HassigCA, SchreiberSL: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p.Science272(5260) , 408–411 (1996).
  • Allis CD , ReinbergD: Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA (2007).
  • Nowak SJ , CorcesVG: Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation.Trends Genet.20(4) , 214–220 (2004).
  • Peters AH , SchubelerD: Methylation of histones: playing memory with DNA.Curr. Opin. Cell Biol.17(2) , 230–238 (2005).
  • Shilatifard A : Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation.Curr. Opin. Cell Biol.20(3) , 341–348 (2008).
  • Shiio Y , EisenmanRN: Histone sumoylation is associated with transcriptional repression.Proc. Natl Acad. Sci. USA100(23) , 13225–13230 (2003).
  • Graff J , MansuyIM: Epigenetic codes in cognition and behaviour.Behav. Brain Res.192(1) , 70–87 (2008).
  • Jaenisch R , BirdA: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.Nat. Genet.33Suppl , 245–254 (2003).
  • Chahrour M , JungSY, ShawCet al.: MeCP2, a key contributor to neurological disease, activates and represses transcription.Science320(5880) , 1224–1229 (2008).
  • Wu SC , ZhangY: Active DNA demethylation: many roads lead to Rome.Nat. Rev. Mol. Cell Biol.11(9) , 607–620 (2010).
  • Jones PL , VeenstraGJ, WadePAet al.: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.Nat. Genet.19(2) , 187–191 (1998).
  • Guan JS , HaggartySJ, GiacomettiEet al.: HDAC2 negatively regulates memory formation and synaptic plasticity.Nature459(7243) , 55–60 (2009).
  • Morris MJ , KarraAS, MonteggiaLM: Histone deacetylases govern cellular mechanisms underlying behavioral and synaptic plasticity in the developing and adult brain.Behav. Pharmacol.21(5–6) , 409–419 (2010).
  • Janssen C , SchmalbachS, BoeseltS, SarletteA, DenglerR, PetriS: Differential histone deacetylase mRNA expression patterns in amyotrophic lateral sclerosis.J. Neuropathol. Exp. Neurol.69(6) , 573–581 (2010).
  • Riccio A : Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways.Nat. Neurosci.13(11) , 1330–1337 (2010).
  • MacDonald JL , RoskamsAJ: Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development.Dev. Dyn.237(8) , 2256–2267 (2008).
  • Schaefer A , SampathSC, IntratorAet al.: Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex.Neuron64(5) , 678–691 (2009).
  • Feng J , ChangH, LiE, FanG: Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system.J. Neurosci. Res.79(6) , 734–746 (2005).
  • Thompson RF , AtzmonG, GheorgheCet al.: Tissue-specific dysregulation of DNA methylation in aging.Aging Cell9(4) , 506–518
  • Penner MR , RothTL, BarnesCA, SweattJD: An epigenetic hypothesis of aging-related cognitive dysfunction.Front. Aging Neurosci.2 , 9 (2010).
  • Penner MR , RothTL, ChawlaMKet al.: Age-related changes in Arc transcription and DNA methylation within the hippocampus.Neurobiol. Aging (2010) (Epub ahead of print).
  • Noh JS , SharmaRP, VeldicMet al.: DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures.Proc. Natl Acad. Sci. USA102(5) , 1749–1754 (2005).
  • Sharma RP , GavinDP, GraysonDR: CpG methylation in neurons: message, memory, or mask?Neuropsychopharmacology35(10) , 2009–2020 (2010).
  • Levenson JM : DNA (cytosine-5) methyltransferase inhibitors: a potential therapeutic agent for schizophrenia.Mol. Pharmacol.71(3) , 635–637 (2007).
  • Barreto G , SchaferA, MarholdJet al.: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation.Nature445(7128) , 671–675 (2007).
  • Ma DK , JangMH, GuoJUet al.: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis.Science323(5917) , 1074–1077 (2009).
  • Kandel JHS , Jessell TM: Principles of Neural Science (4th Edition). McGraw-Hill Medical (2000).
  • Nelson ED , KavalaliET, MonteggiaLM: Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation.J. Neurosci.28(2) , 395–406 (2008).
  • Monteggia LM , KavalaliET: Rett syndrome and the impact of MeCP2 associated transcriptional mechanisms on neurotransmission.Biol. Psychiatry65(3) , 204–210 (2009).
  • Asaka Y , JugloffDG, ZhangL, EubanksJH, FitzsimondsRM: Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome.Neurobiol. Dis.21(1) , 217–227 (2006).
  • Collins AL , LevensonJM, VilaythongAPet al.: Mild overexpression of MeCP2 causes a progressive neurological disorder in mice.Hum. Mol. Genet.13(21) , 2679–2689 (2004).
  • Belichenko PV , OldforsA, HagbergB, DahlstromA: Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents.Neuroreport5(12) , 1509–1513 (1994).
  • Kaufmann WE , MacDonaldSM, AltamuraCR: Dendritic cytoskeletal protein expression in mental retardation: an immunohistochemical study of the neocortex in Rett syndrome.Cereb. Cortex10(10) , 992–1004 (2000).
  • Dani VS , ChangQ, MaffeiA, TurrigianoGG, JaenischR, NelsonSB: Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome.Proc. Natl Acad. Sci. USA102(35) , 12560–12565 (2005).
  • Suzuki M , YamadaT, Kihara-NegishiF, SakuraiT, OikawaT: Direct association between PU.1 and MeCP2 that recruits mSin3A-HDAC complex for PU.1-mediated transcriptional repression.Oncogene22(54) , 8688–8698 (2003).
  • Nelson ED , KavalaliET, MonteggiaLM: MeCP2-dependent transcriptional repression regulates excitatory neurotransmission.Curr. Biol.16(7) , 710–716 (2006).
  • Akhtar MW , RaingoJ, NelsonEDet al.: Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function.J. Neurosci.29(25) , 8288–8297 (2009).
  • Guan Z , GiustettoM, LomvardasSet al.: Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure.Cell111(4) , 483–493 (2002).
  • Levenson JM , O‘RiordanKJ, BrownKD, TrinhMA, MolfeseDL, SweattJD: Regulation of histone acetylation during memory formation in the hippocampus.J. Biol. Chem.279(39) , 40545–40559 (2004).
  • Vecsey CG , HawkJD, LattalKMet al.: Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation.J. Neurosci.27(23) , 6128–6140 (2007).
  • Alarcon JM , MalleretG, TouzaniKet al.: Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration.Neuron42(6) , 947–959 (2004).
  • Wood MA , KaplanMP, ParkAet al.: Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage.Learn Mem.12(2) , 111–119 (2005).
  • Kim SY , LevensonJM, KorsmeyerS, SweattJD, SchumacherA: Developmental regulation of Eed complex composition governs a switch in global histone modification in brain.J. Biol. Chem.282(13) , 9962–9972 (2007).
  • Fontan-Lozano A , Suarez-PereiraI, HorrilloA, del-Pozo-MartinY, HmadchaA, CarrionAM: Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation.J. Neurosci.30(40) , 13305–13313 (2010).
  • Yeh SH , LinCH, GeanPW: Acetylation of nuclear factor-κB in rat amygdala improves long-term but not short-term retention of fear memory.Mol. Pharmacol.65(5) , 1286–1292 (2004).
  • Putignano E , LonettiG, CanceddaLet al.: Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity.Neuron53(5) , 747–759 (2007).
  • Levenson JM , RothTL, LubinFDet al.: Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus.J. Biol. Chem.281(23) , 15763–15773 (2006).
  • Miller CA , CampbellSL, SweattJD: DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.Neurobiol. Learn Mem.89(4) , 599–603 (2008).
  • Feng J , ZhouY, CampbellSLet al.: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.Nat. Neurosci.13(4) , 423–430 (2010).
  • Zhao X , UebaT, ChristieBRet al.: Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function.Proc. Natl Acad. Sci. USA100(11) , 6777–6782 (2003).
  • Moretti P , LevensonJM, BattagliaFet al.: Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome.J. Neurosci.26(1) , 319–327 (2006).
  • Tsankova N , RenthalW, KumarA, NestlerEJ: Epigenetic regulation in psychiatric disorders.Nat. Rev. Neurosci.8(5) , 355–367 (2007).
  • Tsankova NM , BertonO, RenthalW, KumarA, NeveRL, NestlerEJ: Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action.Nat. Neurosci.9(4) , 519–525 (2006).
  • Weaver IC , CervoniN, ChampagneFAet al.: Epigenetic programming by maternal behavior.Nat. Neurosci.7(8) , 847–854 (2004).
  • Weaver IC , DiorioJ, SecklJR, SzyfM, MeaneyMJ: Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites.Ann. NY Acad. Sci.1024 , 182–212 (2004).
  • Roth TL , LubinFD, FunkAJ, SweattJD: Lasting epigenetic influence of early-life adversity on the BDNF gene.Biol. Psychiatry65(9) , 760–769 (2009).
  • Day JJ , SweattJD: DNA methylation and memory formation.Nat. Neurosci.13(11) , 1319–1323 (2010).
  • Levenson JM , SweattJD: Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation.Cell Mol. Life Sci.63(9) , 1009–1016 (2006).
  • Federman N , FustinanaMS, RomanoA: Histone acetylation is recruited in consolidation as a molecular feature of stronger memories.Learn Mem.16(10) , 600–606 (2009).
  • Stefanko DP , BarrettRM, LyAR, ReolonGK, WoodMA: Modulation of long-term memory for object recognition via HDAC inhibition.Proc. Natl Acad. Sci. USA106(23) , 9447–9452 (2009).
  • Korzus E , RosenfeldMG, MayfordM: CBP histone acetyltransferase activity is a critical component of memory consolidation.Neuron42(6) , 961–972 (2004).
  • Josselyn SA , NguyenPV: CREB, synapses and memory disorders: past progress and future challenges.Curr. Drug Targets CNS Neurol. Disord.4(5) , 481–497 (2005).
  • Chen G , ZouX, WatanabeH, van Deursen JM, Shen J: CREB binding protein is required for both short-term and long-term memory formation. J. Neurosci.30(39) , 13066–13077 (2010).
  • Oliveira AM , WoodMA, McDonoughCB, AbelT: Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits.Learn Mem.14(9) , 564–572 (2007).
  • Kalkhoven E : CBP and p300: HATs for different occasions.Biochem. Pharmacol.68(6) , 1145–1155 (2004).
  • Ramos YF , HestandMS, VerlaanMet al.: Genome-wide assessment of differential roles for p300 and CBP in transcription regulation.Nucleic Acids Res.38(16) , 5396–5408
  • Oliveira AM , AbelT, BrindlePK, WoodMA: Differential role for CBP and p300 CREB-binding domain in motor skill learning.Behav. Neurosci.120(3) , 724–729 (2006).
  • Burke SN , BarnesCA: Neural plasticity in the ageing brain.Nat. Rev. Neurosci.7(1) , 30–40 (2006).
  • Kilgore M , MillerCA, FassDMet al.: Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer‘s disease.Neuropsychopharmacology35(4) , 870–880 (2010).
  • Peleg S , SananbenesiF, ZovoilisAet al.: Altered histone acetylation is associated with age-dependent memory impairment in mice.Science328(5979) , 753–756 (2010).
  • Graff J , MansuyIM: Epigenetic dysregulation in cognitive disorders.Eur. J. Neurosci.30(1) , 1–8 (2009).
  • Fischer A , SananbenesiF, MungenastA, TsaiLH: Targeting the correct HDAC(s) to treat cognitive disorders.Trends Pharmacol. Sci.31(12) , 605–617 (2010).
  • Selvi BR , CasselJC, KunduTK, BoutillierAL: Tuning acetylation levels with HAT activators: Therapeutic strategy in neurodegenerative diseases.Biochim. Biophys. Acta1799(10-12) , 840–853 (2010).
  • D‘Mello SR : Histone deacetylases as targets for the treatment of human neurodegenerative diseases.Drug News Perspect.22(9) , 513–524 (2009).
  • Chuang DM , LengY, MarinovaZ, KimHJ, ChiuCT: Multiple roles of HDAC inhibition in neurodegenerative conditions.Trends Neurosci.32(11) , 591–601 (2009).
  • Mai A , RotiliD, ValenteS, KazantsevAG: Histone deacetylase inhibitors and neurodegenerative disorders: holding the promise.Curr. Pharm. Des.15(34) , 3940–3957 (2009).
  • Duclot F , JacquetC, GongoraC, MauriceT: Alteration of working memory but not in anxiety or stress response in p300/CBP associated factor (PCAF) histone acetylase knockout mice bred on a C57BL/6 background.Neurosci. Lett.475(3) , 179–183 (2010).
  • Maurice T , DuclotF, MeunierJet al.: Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice.Neuropsychopharmacology33(7) , 1584–1602 (2008).
  • Roozendaal B , HernandezA, CabreraSMet al.: Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification.J. Neurosci.30(14) , 5037–5046 (2010).
  • Swank MW , SweattJD: Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning.J. Neurosci.21(10) , 3383–3391 (2001).
  • Silingardi D , ScaliM, BelluominiG, PizzorussoT: Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation.Eur. J. Neurosci.31(12) , 2185–2192 (2010).
  • Chwang WB , ArthurJS, SchumacherA, SweattJD: The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation.J. Neurosci.27(46) , 12732–12742 (2007).
  • Chandramohan Y , DrosteSK, ArthurJS, ReulJM: The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.Eur. J. Neurosci.27(10) , 2701–2713 (2008).
  • Reul JM , HeskethSA, CollinsA, MecinasMG: Epigenetic mechanisms in the dentate gyrus act as a molecular switch in hippocampus-associated memory formation.Epigenetics4(7) , 434–439 (2009).
  • Lubin FD , SweattJD: The IκB kinase regulates chromatin structure during reconsolidation of conditioned fear memories.Neuron55(6) , 942–957 (2007).
  • Merlo E , FreudenthalR, RomanoA: The IκB kinase inhibitor sulfasalazine impairs long-term memory in the crab Chasmagnathus.Neuroscience112(1) , 161–172 (2002).
  • Zocchi L , Sassone-CorsiP: Joining the dots: from chromatin remodeling to neuronal plasticity.Curr. Opin. Neurobiol.20(4) , 432–440 (2010).
  • Koshibu K , GraffJ, BeullensMet al.: Protein phosphatase 1 regulates the histone code for long-term memory.J. Neurosci.29(41) , 13079–13089 (2009).
  • Cohen-Armon M , VisochekL, KatzoffAet al.: Long-term memory requires polyADP-ribosylation.Science304(5678) , 1820–1822 (2004).
  • Goldberg S , VisochekL, GiladiE, GozesI, Cohen-ArmonM: PolyADP-ribosylation is required for long-term memory formation in mammals.J. Neurochem.111(1) , 72–79 (2009).
  • Lubin FD , RothTL, SweattJD: Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.J. Neurosci.28(42) , 10576–10586 (2008).
  • Miller CA , SweattJD: Covalent modification of DNA regulates memory formation.Neuron53(6) , 857–869 (2007).
  • Juttermann R , LiE, JaenischR: Toxicity of 5-aza-2´-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation.Proc. Natl Acad. Sci. USA91(25) , 11797–11801 (1994).
  • Frankland PW , BontempiB, TaltonLE, KaczmarekL, SilvaAJ: The involvement of the anterior cingulate cortex in remote contextual fear memory.Science304(5672) , 881–883 (2004).
  • Miller CA , GavinCF, WhiteJAet al.: Cortical DNA methylation maintains remote memory.Nat. Neurosci.13(6) , 664–666 (2010).
  • Fuso A , NicoliaV, CavallaroRAet al.: B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-β deposition in mice.Mol. Cell Neurosci.37(4) , 731–746 (2008).
  • Fuso A , SeminaraL, CavallaroRA, D‘AnselmiF, ScarpaS: S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and β-amyloid production.Mol. Cell Neurosci.28(1) , 195–204 (2005).
  • Scarpa S , FusoA, D‘AnselmiF, CavallaroRA: Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease?FEBS Lett.541(1–3) , 145–148 (2003).
  • Chen TF , HuangRF, LinSE, LuJF, TangMC, ChiuMJ: Folic Acid potentiates the effect of memantine on spatial learning and neuronal protection in an Alzheimer‘s disease transgenic model.J. Alzheimers Dis.20(2) , 607–615 (2010).
  • Mastroeni D , GroverA, DelvauxE, WhitesideC, ColemanPD, RogersJ: Epigenetic changes in Alzheimer‘s disease: decrements in DNA methylation.Neurobiol. Aging31(12) , 2025–2037 (2010).
  • Silva PN , GigekCO, LealMFet al.: Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer‘s disease.J. Alzheimers Dis.13(2) , 173–176 (2008).
  • Wang SC , OelzeB, SchumacherA: Age-specific epigenetic drift in late-onset Alzheimer‘s disease.PLoS One3(7) , e2698 (2008).
  • Scarpa S , CavallaroRA, D‘AnselmiF, FusoA: Gene silencing through methylation: an epigenetic intervention on Alzheimer disease.J. Alzheimers Dis.9(4) , 407–414 (2006).
  • Robinson TE , KolbB: Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine.J. Neurosci.17(21) , 8491–8497 (1997).
  • LaPlant Q , VialouV, CovingtonHE, 3rd et al.: Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci.13(9) , 1137–1143 (2010).
  • Nestler EJ : Molecular basis of long-term plasticity underlying addiction.Nat. Rev. Neurosci.2(2) , 119–128 (2001).
  • Kumar A , ChoiKH, RenthalWet al.: Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum.Neuron48(2) , 303–314 (2005).
  • Sanchis-Segura C , Lopez-AtalayaJP, BarcoA: Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition.Neuropsychopharmacology34(13) , 2642–2654 (2009).
  • Renthal W , MazeI, KrishnanVet al.: Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli.Neuron56(3) , 517–529 (2007).
  • Wang L , LvZ, HuZet al.: Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIα in the nucleus accumbens is critical for motivation for drug reinforcement.Neuropsychopharmacology35(4) , 913–928 (2010).
  • Renthal W , KumarA, XiaoGet al.: Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins.Neuron62(3) , 335–348 (2009).
  • Maze I , CovingtonHE, 3rd, Dietz DM et al.: Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science327(5962) , 213–216 (2010).
  • Stipanovich A , ValjentE, MatamalesMet al.: A phosphatase cascade by which rewarding stimuli control nucleosomal response.Nature453(7197) , 879–884 (2008).
  • Im HI , HollanderJA, BaliP, KennyPJ: MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA.Nat. Neurosci.13(9) , 1120–1127 (2010).
  • Deng W , AimoneJB, GageFH: New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?Nat. Rev. Neurosci.11(5) , 339–350 (2010).
  • Anier K , MalinovskajaK, Aonurm-HelmA, ZharkovskyA, KaldaA: DNA methylation regulates cocaine-induced behavioral sensitization in mice.Neuropsychopharmacology35(12) , 2450–2461 (2010).
  • Shiflett MW , MartiniRP, MaunaJC, FosterRL, PeetE, ThielsE: Cue-elicited reward-seeking requires extracellular signal-regulated kinase activation in the nucleus accumbens.J. Neurosci.28(6) , 1434–1443 (2008).
  • Shiflett MW , MaunaJC, ChipmanAM, PeetE, ThielsE: Appetitive Pavlovian conditioned stimuli increase CREB phosphorylation in the nucleus accumbens.Neurobiol. Learn Mem.92(3) , 451–454 (2009).
  • Danilova AB , KharchenkoOA, ShevchenkoKG, GrinkevichLN: Histone H3 acetylation is asymmetrically induced upon learning in identified neurons of the food aversion network in the mollusk Helix lucorum.Front. Behav. Neurosci.4 , 180 (2010).
  • Cohen-Armon M , VisochekL, RozensalDet al.: DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation.Mol. Cell25(2) , 297–308 (2007).
  • Tsankova NM , KumarA, NestlerEJ: Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures.J. Neurosci.24(24) , 5603–5610 (2004).
  • Huang Y , DohertyJJ, DingledineR: Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus.J. Neurosci.22(19) , 8422–8428 (2002).
  • Sng JC , TaniuraH, YonedaY: Histone modifications in kainate-induced status epilepticus.Eur. J. Neurosci.23(5) , 1269–1282 (2006).
  • Malkani S , WallaceKJ, DonleyMP, RosenJB: An egr-1 (zif268) antisense oligodeoxynucleotide infused into the amygdala disrupts fear conditioning.Learn Mem.11(5) , 617–624 (2004).
  • Baumgartel K , GenouxD, WelzlHet al.: Control of the establishment of aversive memory by calcineurin and Zif.Nat. Neurosci.11(5) , 572–578 (2008).
  • Monfils MH , CowansageKK, LeDouxJE: Brain-derived neurotrophic factor: linking fear learning to memory consolidation.Mol. Pharmacol.72(2) , 235–237 (2007).
  • Sacktor TC : PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage.Prog. Brain Res.169 , 27–40 (2008).
  • Fuchikami M , MorinobuS, KurataA, YamamotoS, YamawakiS: Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus.Int. J. Neuropsychopharmacol.12(1) , 73–82 (2009).
  • Chwang WB , O‘RiordanKJ, LevensonJM, SweattJD: ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning.Learn Mem.13(3) , 322–328 (2006).
  • Crosio C , HeitzE, AllisCD, BorrelliE, Sassone-CorsiP: Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons.J. Cell Sci.116(Pt 24) , 4905–4914 (2003).
  • Gupta S , KimSY, ArtisSet al.: Histone methylation regulates memory formation.J. Neurosci.30(10) , 3589–3599 (2010).
  • An W : Histone acetylation and methylation: combinatorial players for transcriptional regulation.Subcell Biochem.41 , 351–369 (2007).
  • Oliver SS , DenuJM: Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a ‘histone language‘.Chembiochem12(2) , 299–307 (2010).
  • Meaney MJ , Ferguson-SmithAC: Epigenetic regulation of the neural transcriptome: the meaning of the marks.Nat. Neurosci.13(11) , 1313–1318 (2010).
  • Martinowich K , HattoriD, WuHet al.: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.Science302(5646) , 890–893 (2003).
  • Rai K , HugginsIJ, JamesSR, KarpfAR, JonesDA, CairnsBR: DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45.Cell135(7) , 1201–1212 (2008).
  • Kangaspeska S , StrideB, MetivierRet al.: Transient cyclical methylation of promoter DNA.Nature452(7183) , 112–115 (2008).
  • Metivier R , GallaisR, TiffocheCet al.: Cyclical DNA methylation of a transcriptionally active promoter.Nature452(7183) , 45–50 (2008).
  • Sharma RP , TunN, GraysonDR: Depolarization induces downregulation of DNMT1 and DNMT3a in primary cortical cultures.Epigenetics3(2) , 74–80 (2008).
  • Marutha Ravindran CR , TickuMK: Effect of 5-azacytidine on the methylation aspects of NMDA receptor NR2B gene in the cultured cortical neurons of mice.Neurochem. Res.34(2) , 342–350 (2009).
  • Marutha Ravindran CR , TickuMK: Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice.Brain Res. Mol. Brain Res.121(1–2) , 19–27 (2004).
  • Marutha RCR , TickuMK: Role of CpG islands in the up-regulation of NMDA receptor NR2B gene expression following chronic ethanol treatment of cultured cortical neurons of mice.Neurochem. Int.46(4) , 313–327 (2005).
  • Qiang M , DennyA, ChenJ, TickuMK, YanB, HendersonG: The site specific demethylation in the 5´-regulatory area of NMDA receptor 2B subunit gene associated with CIE-induced up-regulation of transcription.PLoS One5(1) , e8798 (2010).
  • Lee S , KimW, HamBJ, ChenW, BearMF, YoonBJ: Activity-dependent NR2B expression is mediated by MeCP2-dependent epigenetic regulation.Biochem. Biophys. Res. Commun.377(3) , 930–934 (2008).
  • Tian F , HuXZ, WuXet al.: Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1.J. Neurochem.109(5) , 1375–1388 (2009).
  • Levenson JM , QiuS, WeeberEJ: The role of reelin in adult synaptic function and the genetic and epigenetic regulation of the reelin gene.Biochim. Biophys. Acta1779(8) , 422–431 (2008).
  • Koshibu K , GraffJ, MansuyIM: Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation.Neuroscience173 , 30–36 (2011).
  • Abel T , MartinKC, BartschD, KandelER: Memory suppressor genes: inhibitory constraints on the storage of long-term memory.Science279(5349) , 338–341 (1998).
  • Costa E , DongE, GraysonDR, GuidottiA, RuzickaW, VeldicM: Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability.Epigenetics2(1) , 29–36 (2007).
  • Jiang Y , LangleyB, LubinFDet al.: Epigenetics in the nervous system.J. Neurosci.28(46) , 11753–11759 (2008).
  • Kim TK , HembergM, GrayJMet al.: Widespread transcription at neuronal activity-regulated enhancers.Nature465(7295) , 182–187 (2010).
  • Smalheiser NR , LugliG, ThimmapuramJ, CookEH, LarsonJ: Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training.RNA17(1) , 166–181 (2011).
  • Edbauer D , NeilsonJR, FosterKAet al.: Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR.Neuron65(3) , 373–384 (2010).
  • Rajasethupathy P , FiumaraF, SheridanRet al.: Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB.Neuron63(6) , 803–817 (2009).
  • Gao J , WangWY, MaoYWet al.: A novel pathway regulates memory and plasticity via SIRT1 and miR.Nature466(7310) , 1105–1109 (2010).
  • Ma DK , MarchettoMC, GuoJU, MingGL, GageFH, SongH: Epigenetic choreographers of neurogenesis in the adult mammalian brain.Nat. Neurosci.13(11) , 1338–1344 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.