551
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Regulation of HIV-1 Transcription

, &
Pages 487-502 | Published online: 18 Aug 2011

Bibliography

  • Miska EA , KarlssonC, LangleyE, NielsenSJ, PinesJ, KouzaridesT. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J.18 , 5099–5107 (1999).
  • Rayman JB , TakahashiY, IndjeianVBet al. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev. 16 , 933–947 (2002).
  • Ng HH , BirdA. Histone deacetylases: silencers for hire. Trends Biochem. Sci.25 , 121–126 (2000).
  • Cress WD , SetoE. Histone deacetylases, transcriptional control, and cancer. J. Cell Physiol.184 , 1–16 (2000).
  • Mahlknecht U , WillJ, VarinA, HoelzerD, HerbeinG. Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J. Immunol.173 , 3979–3990 (2004).
  • Fuks F , BurgersWA, GodinN, KasaiM, KouzaridesT. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J.20 , 2536–2544 (2001).
  • Burgers WA , FuksF, KouzaridesT. DNA methyltransferases get connected to chromatin. Trends Genet.18 , 275–277 (2002).
  • Czermin B , SchottaG, HulsmannBBet al. Physical and functional association of SU(VAR)3–9 and HDAC1 in Drosophila. EMBO Rep. 2 , 915–919 (2001).
  • Tsai SC , ValkovN, YangWM, GumpJ, SullivanD, SetoE. Histone deacetylase interacts directly with DNA topoisomerase II. Nat. Genet.26 , 349–353 (2000).
  • Zhang X , WhartonW, YuanZ, TsaiSC, OlashawN, SetoE. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol. Cell. Biol.24 , 5106–5118 (2004).
  • Marzio G , WagenerC, GutierrezMI, CartwrightP, HelinK, GiaccaM. E2F family members are differentially regulated by reversible acetylation. J. Biol. Chem.275 , 10887–10892 (2000).
  • Braun H , KoopR, ErtmerA, NachtS, SuskeG. Transcription factor Sp3 is regulated by acetylation. Nucleic Acids Res.29 , 4994–5000 (2001).
  • Ammanamanchi S , FreemanJW, BrattainMG. Acetylated sp3 is a transcriptional activator. J. Biol. Chem.278 , 35775–35780 (2003).
  • Gu W , RoederRG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90 , 595–606 (1997).
  • Boyes J , ByfieldP, NakataniY, OgryzkoV. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature396 , 594–598 (1998).
  • Imhof A , YangXJ, OgryzkoVV, NakataniY, WolffeAP, GeH. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol.7 , 689–692 (1997).
  • Ito A , KawaguchiY, LaiCHet al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21 , 6236–6245 (2002).
  • Ito K , YamamuraS, Essilfie-QuayeSet al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med. 203 , 7–13 (2006).
  • Gregoire S , XiaoL, NieJet al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell Biol. 27 , 1280–1295 (2007).
  • Hubbert C , GuardiolaA, ShaoRet al. HDAC6 is a microtubule-associated deacetylase. Nature 417 , 455–458 (2002).
  • Kovacs JJ , MurphyPJ, GaillardSet al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell. 18 , 601–607 (2005).
  • Roth SY , DenuJM, AllisCD. Histone acetyltransferases. Ann. Rev. Biochem.70 , 81–120 (2001).
  • Hodawadekar SC , MarmorsteinR. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene26 , 5528–5540 (2007).
  • Sterner DE , BergerSL. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev.64 , 435–459 (2000).
  • Allis CD , BergerSL, CoteJet al. New nomenclature for chromatin-modifying enzymes. Cell. 131 , 633–636 (2007).
  • Fu M , WangC, ZhangX, PestellRG. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem. Pharmacol.68 , 1199–1208 (2004).
  • Yang XJ , GregoireS. Metabolism, cytoskeleton and cellular signalling in the grip of protein Nε- and O-acetylation. EMBO Rep.8 , 556–562 (2007).
  • Baker SP , GrantPA. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene26 , 5329–5340 (2007).
  • Nagy Z , ToraL. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene26 , 5341–5357 (2007).
  • Chan HM , La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell. Sci.114 , 2363–2373 (2001).
  • Liu X , WangL, ZhaoKet al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451 , 846–850 (2008).
  • Martens JH , O‘SullivanRJ, BraunschweigUet al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24 , 800–812 (2005).
  • Klose RJ , KallinEM, ZhangY. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet.7 , 715–727 (2006).
  • Shi Y . Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet.8 , 829–833 (2007).
  • Bannister AJ , ZegermanP, PartridgeJFet al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410 , 120–124 (2001).
  • Lachner M , O‘CarrollD, ReaS, MechtlerK, JenuweinT. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410 , 116–120 (2001).
  • Martin C , ZhangY. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell. Biol.6 , 838–849 (2005).
  • Rea S , EisenhaberF, O‘CarrollDet al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406 , 593–599 (2000).
  • Jenuwein T . The epigenetic magic of histone lysine methylation. FEBS J.273 , 3121–3135 (2006).
  • Grewal SI , JiaS. Heterochromatin revisited. Nat. Rev. Genet.8 , 35–46 (2007).
  • Tachibana M , SugimotoK, NozakiMet al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16 , 1779–1791 (2002).
  • Tachibana M , UedaJ, FukudaMet al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19 , 815–826 (2005).
  • Shi Y , LanF, MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119 , 941–953 (2004).
  • Huang J , SenguptaR, EspejoABet al. p53 is regulated by the lysine demethylase LSD1. Nature 449 , 105–108 (2007).
  • Karytinos A , FornerisF, ProfumoAet al. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem. 284 , 17775–17782 (2009).
  • Shi YJ , MatsonC, LanF, IwaseS, BabaT, ShiY. Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell.19 , 857–864 (2005).
  • Lee MG , WynderC, CoochN, ShiekhattarR. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature437 , 432–435 (2005).
  • Tsukada Y , FangJ, Erdjument-BromageHet al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439 , 811–816 (2006).
  • Falnes PO , JohansenRF, SeebergE. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature419 , 178–182 (2002).
  • Trewick SC , HenshawTF, HausingerRP, LindahlT, SedgwickB. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature419 , 174–178 (2002).
  • Dann CE 3rd, Bruick RK. Dioxygenases as O2-dependent regulators of the hypoxic response pathway. Biochem. Biophys. Res. Commun.338 , 639–647 (2005).
  • Tahiliani M , KohKP, ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 , 930–935 (2009).
  • Hoffart LM , BarrEW, GuyerRB, BollingerJM Jr, Krebs C. Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase. Proc. Natl Acad. Sci. USA103 , 14738–14743 (2006).
  • Ozer A , BruickRK. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat. Chem. Biol.3 , 144–153 (2007).
  • Gao WY , CaraA, GalloRC, LoriF. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc. Natl Acad. Sci. USA90 , 8925–8928 (1993).
  • Malim MH . APOBEC proteins and intrinsic resistance to HIV-1 infection. Phil. Trans. R. Soc. Lond. B. Biol. Sci.364 , 675–687 (2009).
  • Goila-Gaur R , KhanMA, MiyagiE, StrebelK. Differential sensitivity of ‘old‘ versus ‘new‘ APOBEC3G to human immunodeficiency virus type 1 vif. J. Virol.83 , 1156–1160 (2009).
  • Chiu YL , SorosVB, KreisbergJF, StopakK, YonemotoW, GreeneWC. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+T cells. Nature435 , 108–114 (2005).
  • Goila-Gaur R , StrebelK. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology5 , 51 (2008).
  • Lin TY , EmermanM. Determinants of cyclophilin A-dependent TRIM5α restriction against HIV-1. Virology379 , 335–341 (2008).
  • Sebastian S , LubanJ. The retroviral restriction factor TRIM5α. Curr. Infect. Dis. Rep.9 , 167–173 (2007).
  • Towers GJ . The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology4 , 40 (2007).
  • Bukrinsky MI , StanwickTL, DempseyMP, StevensonM. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science254 , 423–427 (1991).
  • Williams SA , GreeneWC. Regulation of HIV-1 latency by T-cell activation. Cytokine39 , 63–74 (2007).
  • Zhou Y , ZhangH, SilicianoJD, SilicianoRF. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J. Virol.79 , 2199–2210 (2005).
  • Pierson TC , ZhouY, KiefferTL, RuffCT, BuckC, SilicianoRF. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J. Virol.76 , 8518–8531 (2002).
  • Lewinski MK , YamashitaM, EmermanMet al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2 , e60 (2006).
  • Meehan AM , SaenzDT, MorrisonJHet al. LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors. PLoS Pathog. 5 , e1000522 (2009).
  • Schroder AR , ShinnP, ChenH, BerryC, EckerJR, BushmanF. HIV-1 integration in the human genome favors active genes and local hotspots. Cell110 , 521–529 (2002).
  • Lenasi T , ContrerasX, PeterlinBM. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell. Host Microbe4 , 123–133 (2008).
  • Verdin E . DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J. Virol.65 , 6790–6799 (1991).
  • Verdin E , ParasP Jr, Van Lint C. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J.12 , 3249–3259 (1993).
  • Van Lint C , EmilianiS, OttM, VerdinE. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J.15 , 1112–1120 (1996).
  • Yu W , WangY, ShawCA, QinXF, RiceAP. Induction of the HIV-1 Tat co-factor cyclin T1 during monocyte differentiation is required for the regulated expression of a large portion of cellular mRNAs. Retrovirology3 , 32 (2006).
  • Liou LY , HerrmannCH, RiceAP. Human immunodeficiency virus type 1 infection induces cyclin t1 expression in macrophages. J. Virol.78 , 8114–8119 (2004).
  • Voinnet O . Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet.6 , 206–220 (2005).
  • Huang J , WangF, ArgyrisEet al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat. Med. 13 , 1241–1247 (2007).
  • Ahluwalia JK , KhanSZ, SoniKet al. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 5 , 117 (2008).
  • Sung TL , RiceAP. miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog.5 , e1000263 (2009).
  • Grewal SI , MoazedD. Heterochromatin and epigenetic control of gene expression. Science301 , 798–802 (2003).
  • Avram D , FieldsA, Pretty On Top K, Nevrivy DJ, Ishmael JE, Leid M. Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J. Biol. Chem.275 , 10315–10322 (2000).
  • Leid M , IshmaelJE, AvramD, ShepherdD, FraulobV, DolleP. CTIP1 and CTIP2 are differentially expressed during mouse embryogenesis. Gene Expr. Patterns4 , 733–739 (2004).
  • Arlotta P , MolyneauxBJ, ChenJ, InoueJ, KominamiR, MacklisJD. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron45 , 207–221 (2005).
  • Rohr O , LecestreD, Chasserot-GolazSet al. Recruitment of Tat to heterochromatin protein HP1 via interaction with CTIP2 inhibits human immunodeficiency virus type 1 replication in microglial cells. J. Virol. 77 , 5415–5427 (2003).
  • Marban C , RedelL, SuzanneSet al. COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res. 33 , 2318–2331 (2005).
  • Marban C , SuzanneS, DequiedtFet al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J. 26 , 412–423 (2007).
  • Marcello A . Latency: the hidden HIV-1 challenge. Retrovirology3 , 7 (2006).
  • Maison C , AlmouzniG. HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol.5 , 296–304 (2004).
  • Koiwa T , Hamano-UsamiA, IshidaTet al. 5´-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J. Virol. 76 , 9389–9397 (2002).
  • Taniguchi Y , NosakaK, YasunagaJet al. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2 , 64 (2005).
  • Kauder SE , BosqueA, LindqvistA, PlanellesV, VerdinE. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog.5 , e1000495 (2009).
  • Sune C , Garcia-BlancoMA. Sp1 transcription factor is required for in vitro basal and Tat-activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J. Virol.69 , 6572–6576 (1995).
  • Perkins ND , EdwardsNL, DuckettCS, AgranoffAB, SchmidRM, NabelGJ. A cooperative interaction between NF-κ B and Sp1 is required for HIV-1 enhancer activation. EMBO J.12 , 3551–3558 (1993).
  • Williams SA , ChenLF, KwonH, Ruiz-JaraboCM, VerdinE, GreeneWC. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J.25 , 139–149 (2006).
  • Gerritsen ME , WilliamsAJ, NeishAS, MooreS, ShiY, CollinsT. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl Acad. Sci. USA94 , 2927–2932 (1997).
  • Zhong H , MayMJ, JimiE, GhoshS. The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell9 , 625–636 (2002).
  • Lusic M , MarcelloA, CeresetoA, GiaccaM. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J.22 , 6550–6561 (2003).
  • Thierry S , MarechalV, RosenzwajgMet al. Cell cycle arrest in G2 induces human immunodeficiency virus type 1 transcriptional activation through histone acetylation and recruitment of CBP, NF-κB, and c-Jun to the long terminal repeat promoter. J. Virol. 78 , 12198–12206 (2004).
  • Calao M , BurnyA, QuivyV, DekoninckA, Van Lint C. A pervasive role of histone acetyltransferases and deacetylases in an NF-κB-signaling code. Trends Biochem. Sci.33 , 339–349 (2008).
  • Kim YK , BourgeoisCF, PearsonRet al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J. 25 , 3596–3604 (2006).
  • Barboric M , NissenRM, KanazawaS, Jabrane-FerratN, PeterlinBM. NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Cell8 , 327–337 (2001).
  • Garcia-Rodriguez C , RaoA. Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). J. Exp. Med.187 , 2031–2036 (1998).
  • He G , MargolisDM. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol. Cell. Biol.22 , 2965–2973 (2002).
  • Romerio F , GabrielMN, MargolisDM. Repression of human immunodeficiency virus type 1 through the novel cooperation of human factors YY1 and LSF. J. Virol.71 , 9375–9382 (1997).
  • Imai K , OkamotoT. Transcriptional repression of human immunodeficiency virus type 1 by AP-4. J. Biol. Chem.281 , 12495–12505 (2006).
  • Jiang G , EspesethA, HazudaDJ, MargolisDM. c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J. Virol.81 , 10914–10923 (2007).
  • Sorin M , CanoJ, DasSet al. Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication. PLoS Pathog. 5 , e1000463 (2009).
  • Lusic M , MarcelloA, CeresetoA, GiaccaM. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J.22 , 6550–6561 (2003).
  • Benkirane M , ChunRF, XiaoHet al. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J. Biol. Chem. 273 , 24898–24905 (1998).
  • Ping YH , RanaTM. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem.276 , 12951–12958 (2001).
  • Yamaguchi Y , TakagiT, WadaTet al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97 , 41–51 (1999).
  • Kao SY , CalmanAF, LuciwPA, PeterlinBM. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature330 , 489–493 (1987).
  • Coull JJ , RomerioF, SunJMet al. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J. Virol. 74 , 6790–6799 (2000).
  • Kiernan RE , VanhulleC, SchiltzLet al. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J. 18 , 6106–6118 (1999).
  • Barboric M , PeterlinBM. A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol.3 , e76 (2005).
  • Parada CA , RoederRG. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature384 , 375–378 (1996).
  • Zhou M , HalanskiMA, RadonovichMFet al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20 , 5077–5086 (2000).
  • Fujinaga K , IrwinD, HuangY, TaubeR, KurosuT, PeterlinBM. Dynamics of human immunodeficiency virus transcription. P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol.24 , 787–795 (2004).
  • Kaehlcke K , DorrA, Hetzer-EggerCet al. Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol. Cell 12 , 167–176 (2003).
  • Bres V , KiernanR, EmilianiS, BenkiraneM. Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J. Biol. Chem.277 , 22215–22221 (2002).
  • Ott M , DorrA, Hetzer-EggerCet al. Tat acetylation: a regulatory switch between early and late phases in HIV transcription elongation. Novartis Found. Symp. 259 , 182–193; discussion 193–186, 223–185 (2004).
  • Mahmoudi T , ParraM, VriesRGet al. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J. Biol. Chem. 281 , 19960–19968 (2006).
  • Pagans S , PedalA, NorthBJet al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3 , e41 (2005).
  • Zhang HS , WuMR. SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase. Virus Res.146 , 51–57 (2009).
  • Blazek D , PeterlinBM. Tat-SIRT1 tango. Mol. Cell29 , 539–540 (2008).
  • Kwon HS , BrentMM, GetachewRet al. Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell. Host Microbe 3 , 158–167 (2008).
  • Trono D , Van Lint C, Rouzioux C et al. HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science329 , 174–180 (2010).
  • Rong L , PerelsonAS. Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol.260 , 308–331 (2009).
  • Ylisastigui L , ArchinNM, LehrmanG, BoschRJ, MargolisDM. Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS18 , 1101–1108 (2004).
  • Quivy V , De Walque S, Van Lint C. Chromatin-associated regulation of HIV-1 transcription: implications for the development of therapeutic strategies. Subcell. Biochem.41 , 371–396 (2007).
  • Archin NM , EspesethA, ParkerD, CheemaM, HazudaD, MargolisDM. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res. Hum. Retroviruses25 , 207–212 (2009).
  • Edelstein LC , Micheva-VitevaS, PhelanBD, DoughertyJP. Short communication: activation of latent HIV type 1 gene expression by suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor approved for use to treat cutaneous T cell lymphoma. AIDS Res. Hum. Retroviruses25 , 883–887 (2009).
  • Contreras X , SchwenekerM, ChenCSet al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J. Biol. Chem. 284 , 6782–6789 (2009).
  • Ylisastigui L , CoullJJ, RuckerVCet al. Polyamides reveal a role for repression in latency within resting T cells of HIV-infected donors. J. Infect. Dis. 190 , 1429–1437 (2004).
  • Archin NM , KeedyKS, EspesethA, DangH, HazudaDJ, MargolisDM. Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS23 , 1799–1806 (2009).
  • Keedy KS , ArchinNM, GatesAT, EspesethA, HazudaDJ, MargolisDM. A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. J. Virol.83 , 4749–4756 (2009).
  • Korin YD , BrooksDG, BrownS, KorotzerA, ZackJA. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J. Virol.76 , 8118–8123 (2002).
  • Brooks DG , HamerDH, ArlenPAet al. Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19 , 413–423 (2003).
  • Reuse S , CalaoM, KabeyaKet al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS ONE 4 , e6093 (2009).
  • Zhang HS , ZhouY, WuMR, ZhouHS, XuF. Resveratrol inhibited Tat-induced HIV-1 LTR transactivation via NAD+-dependent SIRT1 activity. Life Sci.85 , 484–489 (2009).
  • Greiner D , BonaldiT, EskelandR, RoemerE, ImhofA. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol.1 , 143–145 (2005).
  • Miranda TB , CortezCC, YooCBet al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8 , 1579–1588 (2009).
  • Chang Y , ZhangX, HortonJRet al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16 , 312–317 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.