348
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Treatment of Neurological Disease

Pages 431-450 | Published online: 18 Aug 2011

Bibliography

  • Walker FO . Huntington‘s disease. Lancet369(9557) , 218–228 (2007).
  • Gray SG . Targeting histone deacetylases for the treatment of Huntington‘s disease. CNS Neurosci. Ther.16(6) , 348–361 (2010).
  • Ittner LM , GotzJ. Amyloid-β and τ – a toxic pas de deux in Alzheimer‘s disease. Nat. Rev. Neurosci.12(2) , 65–72 (2011).
  • Allis CD , BergerSL, CoteJet al. New nomenclature for chromatin-modifying enzymes. Cell 131(4) , 633–636 (2007).
  • Albert M , HelinK. Histone methyltransferases in cancer. Semin. Cell. Dev. Biol.21(2) , 209–220 (2010).
  • Sims RJ 3rd, Reinberg D. Is there a code embedded in proteins that is based on post-translational modifications? Nat. Rev. Mol. Cell Biol.9(10) , 815–820 (2008).
  • Calao M , BurnyA, QuivyV, DekoninckA, Van Lint C. A pervasive role of histone acetyltransferases and deacetylases in an NF-κB-signaling code. Trends Biochem. Sci.33(7) , 339–349 (2008).
  • Gray SG . Targeting Huntington‘s disease through histone deacetylases. Clin. Epigenetics2 , DOI: 10.1007/s13148–13011–10025–13147 (2011) (Epub ahead of print).
  • Zhang YQ , SargeKD. Sumoylation of amyloid precursor protein negatively regulates Aβ aggregate levels. Biochem. Biophys. Res. Comm.374(4) , 673–678 (2008).
  • Guan JS , HaggartySJ, GiacomettiEet al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243) , 55–60 (2009).
  • Bardai FH , D‘MelloSR. Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J. Neurosci.31(5) , 1746–1751 (2011).
  • Yohrling GJ , FarrellLA, HollenbergAN, ChaJH. Mutant huntingtin increases nuclear corepressor function and enhances ligand-dependent nuclear hormone receptor activation. Mol. Cell. Neurosci.23(1) , 28–38 (2003).
  • Duclot F , MeffreJ, JacquetC, GongoraC, MauriceT. Mice knock out for the histone acetyltransferase p300/CREB binding protein-associated factor develop a resistance to amyloid toxicity. Neuroscience167(3) , 850–863 (2010).
  • Francis YI , FaM, AshrafHet al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer‘s disease. J. Alzheimers Dis. 18(1) , 131–139 (2009).
  • Saura CA , ChoiSY, BeglopoulosVet al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42(1) , 23–36 (2004).
  • Bates EA , VictorM, JonesAK, ShiY, HartAC. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci.26(10) , 2830–2838 (2006).
  • Sarkander HI , Fleischer-LambropoulosH, BradeWP. A comparative study of histone acetylation in neuronal and glial nuclei enriched rat brain fractions. FEBS Lett.52(1) , 40–43 (1975).
  • Liu H , HuQ, KaufmanA, D‘ercoleAJ, YeP. Developmental expression of histone deacetylase 11 in the murine brain. J. Neurosci. Res.86(3) , 537–543 (2008).
  • Lakowski B , RoelensI, JacobS. CoREST-like complexes regulate chromatin modification and neuronal gene expression. J. Mol. Neurosci.29(3) , 227–239 (2006).
  • Ajamian F , SuuronenT, SalminenA, ReebenM. Upregulation of class II histone deacetylases mRNA during neural differentiation of cultured rat hippocampal progenitor cells. Neurosci. Lett.346(1–2) , 57–60 (2003).
  • Horio Y , HisaharaS, SakamotoJ. [Functional analysis of SIR2]. Nippon Yakurigaku. Zasshi. (Suppl. 122), 30P–32P (2003).
  • Hoshino M , TagawaK, OkudaTet al. Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem. 87(1) , 257–267 (2003).
  • Kyrylenko S , KyrylenkoO, SuuronenT, SalminenA. Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell. Mol. Life Sci.60(9) , 1990–1997 (2003).
  • Brunet A , SweeneyLB, SturgillJFet al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666) , 2011–2015 (2004).
  • Weaver IC , CervoniN, ChampagneFAet al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7(8) , 847–854 (2004).
  • Renthal W , MazeI, KrishnanVet al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3) , 517–529 (2007).
  • Borovecki F , LovrecicL, ZhouJet al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington‘s disease. Proc. Natl Acad. Sci. USA 102(31) , 11023–11028 (2005).
  • Sadri-Vakili G , BouzouB, BennCLet al. Histones associated with downregulated genes are hypo-acetylated in Huntington‘s disease models. Hum. Mol. Genet. 16(11) , 1293–1306 (2007).
  • Stack EC , Del Signore SJ, Luthi-Carter R et al. Modulation of nucleosome dynamics in Huntington‘s disease. Hum. Mol. Genet.16(10) , 1164–1175 (2007).
  • Lee J , RyuH. Epigenetic modification is linked to Alzheimer‘s disease: is it a maker or a marker? BMB Rep.43(10) , 649–655 (2010).
  • Chouliaras L , RuttenBP, KenisGet al. Epigenetic regulation in the pathophysiology of Alzheimer‘s disease. Prog. Neurobiol. 90(4) , 498–510 (2010).
  • Ogawa O , ZhuX, LeeHGet al. Ectopic localization of phosphorylated histone H3 in Alzheimer‘s disease: a mitotic catastrophe? Acta Neuropathol. 105(5) , 524–528 (2003).
  • Ryan KA , PimplikarSW. Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J. Cell. Biol.171(2) , 327–335 (2005).
  • Ghosal K , VogtDL, LiangM, ShenY, LambBT, PimplikarSW. Alzheimer‘s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc. Natl Acad. Sci. USA106(43) , 18367–18372 (2009).
  • Ohkawara T , NagaseH, KohCS, NakayamaK. The amyloid precursor protein intracellular domain alters gene expression and induces neuron-specific apoptosis. Gene475(1) , 1–9 (2011).
  • Ghosal K , StathopoulosA, PimplikarSW. APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS ONE5(7) , e11866 (2010).
  • Cao X , SudhofTC. Dissection of amyloid-β precursor protein-dependent transcriptional transactivation. J. Biol. Chem.279(23) , 24601–24611 (2004).
  • Xu X , ZhouH, BoyerTG. Mediator is a transducer of amyloid-precursor-protein-dependent nuclear signalling. EMBO Rep.12(3) , 216–222 (2011).
  • Abrajano JJ , QureshiIA, GokhanS, ZhengD, BergmanA, MehlerMF. REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLoS ONE4(12) , e7936 (2009).
  • Qureshi IA , GokhanS, MehlerMF. REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle9(22) , 4477–4486 (2010).
  • Bahn S , MimmackM, RyanMet al. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down‘s syndrome: a gene expression study. Lancet 359(9303) , 310–315 (2002).
  • Saijo K , WinnerB, CarsonCTet al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1) , 47–59 (2009).
  • Ballas N , GrunseichC, LuDD, SpehJC, MandelG. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell121(4) , 645–657 (2005).
  • Battaglioli E , AndresME, RoseDWet al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem. 277(43) , 41038–41045 (2002).
  • Watanabe H , MizutaniT, HaraguchiTet al. SWI/SNF complex is essential for NRSF-mediated suppression of neuronal genes in human nonsmall cell lung carcinoma cell lines. Oncogene 25(3) , 470–479 (2006).
  • Wang J , ScullyK, ZhuXet al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446(7138) , 882–887 (2007).
  • Packer AN , XingY, HarperSQ, JonesL, DavidsonBL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington‘s disease. J. Neurosci.28(53) , 14341–14346 (2008).
  • Bithell A , JohnsonR, BuckleyNJ. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington‘s disease. Biochem. Soc. Trans.37(Pt 6) , 1270–1275 (2009).
  • Zuccato C , TartariM, CrottiAet al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet. 35(1) , 76–83 (2003).
  • Conaco C , OttoS, HanJJ, MandelG. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA103(7) , 2422–2427 (2006).
  • Wu J , XieX. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome. Biol.7(9) , R85 (2006).
  • Buckley NJ , JohnsonR, ZuccatoC, BithellA, CattaneoE. The role of REST in transcriptional and epigenetic dysregulation in Huntington‘s disease. Neurobiol. Dis.39(1) , 28–39 (2010).
  • Johnson R , RichterN, JauchRet al. The human accelerated region 1 noncoding RNA is repressed by REST in Huntington‘s disease. Physiol. Genomics (2010) (Epub ahead of print).
  • Lee ST , ChuK, ImWSet al. Altered microRNA regulation in Huntington‘s disease models. Exp. Neurol. 227(1) , 172–179 (2011).
  • Zhang J , YangY, YangTet al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br. J. Cancer 103(8) , 1215–1220 (2010).
  • Quinti L , ChopraV, RotiliDet al. Evaluation of histone deacetylases as drug targets in Huntington‘s disease models. Study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS Curr. 2 , pii: RRN1172 (2010).
  • Fischer A , SananbenesiF, MungenastA, TsaiLH. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol. Sci.31(12) , 605–617 (2010).
  • Boutillier AI , TrinhE, LoefflerJP. Constitutive repression of E2F1 transcriptional activity through HDAC proteins is essential for neuronal survival. Ann. NY Acad. Sci.973 , 438–442 (2002).
  • Pelegri C , Duran-VilaregutJ, Del Valle J et al. Cell cycle activation in striatal neurons from Huntington‘s disease patients and rats treated with 3-nitropropionic acid. Int. J. Dev. Neurosci.26(7) , 665–671 (2008).
  • Jordan-Sciutto K l, Malaiyandi LM, Bowser R. Altered distribution of cell cycle transcriptional regulators during Alzheimer disease. J. Neuropathol. Exp. Neurol.61(4) , 358–367 (2002).
  • Camelo S , IglesiasAH, HwangDet al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164(1–2) , 10–21 (2005).
  • Curtis MA , PenneyEB, PearsonAGet al. Increased cell proliferation and neurogenesis in the adult human Huntington‘s disease brain. Proc. Natl Acad. Sci. USA 100(15) , 9023–9027 (2003).
  • Lorincz MT , ZawistowskiVA. Expanded CAG repeats in the murine Huntington‘s disease gene increases neuronal differentiation of embryonic and neural stem cells. Mol. Cell. Neurosci.40(1) , 1–13 (2009).
  • Lazarov O , MattsonMP, PetersonDA, PimplikarSW, Van Praag H. When neurogenesis encounters aging and disease. Trends Neurosci.33(12) , 569–579 (2010).
  • Lopez-Toledano MA , Shelanski Ml. Increased neurogenesis in young transgenic mice overexpressing human APP (Sw, Ind). J. Alzheimers Dis.12(3) , 229–240 (2007).
  • Yu Y , HeJ, ZhangYet al. Increased hippocampal neurogenesis in the progressive stage of Alzheimer‘s disease phenotype in an APP/PS1 double transgenic mouse model. Hippocampus 19(12) , 1247–1253 (2009).
  • Macdonald JL , RoskamsAJ. Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev. Dyn.237(8) , 2256–2267 (2008).
  • Humphrey GW , WangYH, HiraiTet al. Complementary roles for histone deacetylases 1, 2, and 3 in differentiation of pluripotent stem cells. Differentiation 76(4) , 348–356 (2007).
  • Montgomery RL , HsiehJ, BarbosaAC, RichardsonJA, OlsonEN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc. Natl Acad. Sci. USA106(19) , 7876–7881 (2009).
  • Prozorovski T , Schulze-TopphoffU, GlummRet al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell. Biol. 10(4) , 385–394 (2008).
  • Sun G , YuRT, EvansRM, ShiY. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc. Natl Acad. Sci. USA104(39) , 15282–15287 (2007).
  • Balasubramaniyan V , BoddekeE, BakelsRet al. Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 143(4) , 939–951 (2006).
  • Yao X , ZhangJR, HuangHR, DaiLC, LiuQJ, ZhangM. Histone deacetylase inhibitor promotes differentiation of embryonic stem cells into neural cells in adherent monoculture. Chin. Med. J. (Engl.)123(6) , 734–738 (2010).
  • Yu IT , ParkJY, KimSH, LeeJS, KimYS, SonH. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology56(2) , 473–480 (2009).
  • Lyssiotis CA , WalkerJ, WuC, KondoT, SchultzPG, WuX. Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc. Natl Acad. Sci. USA104(38) , 14982–14987 (2007).
  • Liu A , HanYR, LiJet al. The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J. Neurosci. 27(27) , 7339–7343 (2007).
  • He Y , DupreeJ, WangJet al. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55(2) , 217–230 (2007).
  • Su X , KameokaS, LentzS, MajumderS. Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol. Cell. Biol.24(18) , 8018–8025 (2004).
  • Greenway DJ , StreetM, JeffriesA, BuckleyNJ. RE1 Silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells25(2) , 354–363 (2007).
  • Sun YM , GreenwayDJ, JohnsonRet al. Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Mol. Biol. Cell. 16(12) , 5630–5638 (2005).
  • Gaub P , TedeschiA, PuttaguntaR, NguyenT, SchmandkeA, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell. Death Differ.17(9) , 1392–1408 (2010).
  • Fischer A , SananbenesiF, WangX, DobbinM, TsaiLH. Recovery of learning and memory is associated with chromatin remodelling. Nature447(7141) , 178–182 (2007).
  • Hughes RE , LoRS, DavisCet al. Altered transcription in yeast expressing expanded polyglutamine. Proc. Natl Acad. Sci. USA 98(23) , 13201–13206 (2001).
  • Steffan JS , BodaiL, PallosJet al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413(6857) , 739–743 (2001).
  • Kegel KB , MeloniAR, YiYet al. Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J. Biol. Chem. 277(9) , 7466–7476 (2002).
  • Ferrante RJ , KubilusJK, LeeJet al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington‘s disease mice. J. Neurosci. 23(28) , 9418–9427 (2003).
  • Nuydens R , HeersC, ChadarevianAet al. Sodium butyrate induces aberrant τ phosphorylation and programmed cell death in human neuroblastoma cells. Brain Res. 688(1–2) , 86–94 (1995).
  • Kilgore M , MillerCA, FassDMet al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer‘s disease. Neuropsychopharmacology 35(4) , 870–880 (2010).
  • Govindarajan N , Agis-BalboaRC, WalterJ, SananbenesiF, FischerA. Sodium butyrate improves memory function in an Alzheimer‘s disease mouse model when administered at an advanced stage of disease progression. J. Alzheimers Dis. (2011) (Epub ahead of print).
  • Gardian G , BrowneSE, ChoiDKet al. Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington‘s disease. J. Biol. Chem. 280(1) , 556–563 (2005).
  • Ebbel EN , LeymarieN, SchiavoSet al. Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry. Anal. Biochem. 399(2) , 152–161 (2010).
  • Ricobaraza A , Cuadrado-TejedorM, Perez-MediavillaA, FrechillaD, Del Rio J, Garcia-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces τ pathology in an Alzheimer‘s disease mouse model. Neuropsychopharmacology34(7) , 1721–1732 (2009).
  • Ricobaraza A , Cuadrado-TejedorM, MarcoS, Perez-OtanoI, Garcia-OstaA. Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus DOI: 10.1002/hipo.20883 (2010) (Epub ahead of print).
  • Abematsu M , TsujimuraK, YamanoMet al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J. Clin. Invest. 120(9) , 3255–3266 (2010).
  • Zadori D , GeiszA, VamosE, VecseiL, KlivenyiP. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington‘s disease. Pharmacol. Biochem. Behav.94(1) , 148–153 (2009).
  • Qing H , HeG, LyPTet al. Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer‘s disease mouse models. J. Exp. Med. 205(12) , 2781–2789 (2008).
  • Salazar Z , TschoppL, CalandraC, MicheliF. Pisa syndrome and parkinsonism secondary to valproic acid in Huntington‘s disease. Mov. Disord.23(16) , 2430–2431 (2008).
  • Venkataramani V , RossnerC, IfflandLet al. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the Alzheimer amyloid precursor protein. J. Biol. Chem. 285(14) , 10678–10689 (2010).
  • Hockly E , RichonVM, WoodmanBet al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington‘s disease. Proc. Natl Acad. Sci. USA 100(4) , 2041–2046 (2003).
  • Khan N , JeffersM, KumarSet al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409(2) , 581–589 (2008).
  • Dokmanovic M , PerezG, XuWet al. Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol. Cancer Ther. 6(9) , 2525–2534 (2007).
  • Benn C l, Butler R, Mariner L et al. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington‘s disease. PLoS ONE4(6) , e5747 (2009).
  • Dompierre JP , GodinJD, CharrinBCet al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington‘s disease by increasing tubulin acetylation. J. Neurosci. 27(13) , 3571–3583 (2007).
  • Perez M , Santa-MariaI, Gomez De Barreda E et al. τ – an inhibitor of deacetylase HDAC6 function. J. Neurochem.109(6) , 1756–1766 (2009).
  • Jiang Q , RenY, FengJ. Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J. Neurosci.28(48) , 12993–13002 (2008).
  • Bonda DJ , LeeHG, CaminsAet al. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol. 10(3) , 275–279 (2011).
  • Richard T , PawlusAD, IglesiasMLet al. Neuroprotective properties of resveratrol and derivatives. Ann. NY Acad. Sci. 1215 , 103–108 (2011).
  • Thomas EA , CoppolaG, DesplatsPAet al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington‘s disease transgenic mice. Proc. Natl Acad. Sci. USA 105(40) , 15564–15569 (2008).
  • Kozikowski AP , ChenY, SubhasishTet al. Searching for disease modifiers – PKC activation and HDAC inhibition – a dual drug approach to Alzheimer‘s disease that decreases Aβ production while blocking oxidative stress. Chem. Med. Chem. 4(7) , 1095–1105 (2009).
  • Luthi-Carter R , TaylorDM, PallosJet al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc. Natl Acad. Sci. USA 107(17) , 7927–7932 (2010).
  • Taylor DM , BalabadraU, XiangZet al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem. Biol. 6(6) , 540–546 (2011).
  • Arif M , SenapatiP, ShandilyaJ, KunduTK. Protein lysine acetylation in cellular function and its role in cancer manifestation. Biochim. Biophys. Acta.1799(10–12) , 702–716 (2010).
  • Hubbert C , GuardiolaA, ShaoRet al. HDAC6 is a microtubule-associated deacetylase. Nature 417(6887) , 455–458 (2002).
  • Hempen B , BrionJP. Reduction of acetylated α-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer‘s disease. J. Neuropathol. Exp. Neurol.55(9) , 964–972 (1996).
  • Jeong H , ThenF, MeliaTJ Jr et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell137(1) , 60–72 (2009).
  • Mankan AK , LawlessMW, GraySG, KelleherD, McmanusR. NF-κB regulation: the nuclear response. J. Cell. Mol. Med.13(4) , 631–643 (2009).
  • Thompson LM , AikenCT, KaltenbachLSet al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J. Cell. Biol. 187(7) , 1083–1099 (2009).
  • Cohen TJ , GuoJL, HurtadoDEet al. The acetylation of τ inhibits its function and promotes pathological τ aggregation. Nat. Comm. 2 , 252 (2011).
  • Min SW , ChoSH, ZhouYet al. Acetylation of τ inhibits its degradation and contributes to tauopathy. Neuron 67(6) , 953–966 (2010).
  • Kimura T , FukudaT, SaharaNet al. Aggregation of detergent-insoluble τ is involved in neuronal loss but not in synaptic loss. J. Biol. Chem. 285(49) , 38692–38699 (2010).
  • Stockley JH , O‘NeillC. The proteins BACE1 and BACE2 and β-secretase activity in normal and Alzheimer‘s disease brain. Biochem. Soc. Trans.35(Pt 3) , 574–576 (2007).
  • Cole SL , VassarR. The role of amyloid precursor protein processing by BACE1, the β-secretase, in Alzheimer disease pathophysiology. J. Biol. Chem.283(44) , 29621–29625 (2008).
  • Faghihi MA , ModarresiF, KhalilAMet al. Expression of a noncoding RNA is elevated in Alzheimer‘s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14(7) , 723–730 (2008).
  • Costantini C , KoMH, JonasMC, PuglielliL. A reversible form of lysine acetylation in the ER and golgi lumen controls the molecular stabilization of BACE1. Biochem. J.407(3) , 383–395 (2007).
  • Ko MH , PuglielliL. Two endoplasmic reticulum (ER)/ER golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J. Biol. Chem.284(4) , 2482–2492 (2009).
  • Donmez G , WangD, CohenDE, GuarenteL. SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10. Cell142(2) , 320–332 (2010).
  • Pallas M , PizarroJG, Gutierrez-CuestaJet al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154(4) , 1388–1397 (2008).
  • Grivennikov SI , GretenFR, KarinM. Immunity, inflammation, and cancer. Cell140(6) , 883–899 (2010).
  • Lawless MW , NorrisS, O‘ByrneKJ, GraySG. Targeting histone deacetylases for the treatment of immune, endocrine and metabolic disorders. Endocr. Metab. Imm. Disord. Drug Targets9(1) , 84–107 (2009).
  • Amor S , PuentesF, BakerD, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology129(2) , 154–169 (2010).
  • Schwab C , KlegerisA, McGeerPL. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim. Biophys. Acta1802(10) , 889–902 (2010).
  • Lawless MW , NorrisS, O‘ByrneKJ, GraySG. Targeting histone deacetylases for the treatment of disease. J. Cell. Mol. Med.13(5) , 826–852 (2009).
  • Khoshnan A , KoJ, WatkinEE, PaigeLA, ReinhartPH, PattersonPH. Activation of the IκB kinase complex and nuclear factor-κB contributes to mutant huntingtin neurotoxicity. J. Neurosci.24(37) , 7999–8008 (2004).
  • Khoshnan A , KoJ, TescuS, BrundinP, PattersonPH. IKKα and IKKβ regulation of DNA damage-induced cleavage of huntingtin. PLoS ONE4(6) , e5768 (2009).
  • Buggia-Prevot V , SevalleJ, RossnerS, CheclerF. NFκB-dependent control of BACE1 promoter transactivation by Aβ42. J. Biol. Chem.283(15) , 10037–10047 (2008).
  • Tan L , SchedlP, SongHJ, GarzaD, KonsolakiM. The Toll-->NFκB signaling pathway mediates the neuropathological effects of the human Alzheimer‘s Aβ42 polypeptide in Drosophila. PLoS ONE3(12) , e3966 (2008).
  • Chen J , ZhouY, Mueller-SteinerSet al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem. 280(48) , 40364–40374 (2005).
  • Rutkowski DT , KaufmanRJ. A trip to the ER: coping with stress. Trends Cell. Biol.14(1) , 20–28 (2004).
  • Hebert DN , MolinariM. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev.87(4) , 1377–1408 (2007).
  • Rapoport TA . Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature450(7170) , 663–669 (2007).
  • Bardag-Gorce F , DedesJ, FrenchBA, OlivaJV, LiJ, FrenchSW. Mallory body formation is associated with epigenetic phenotypic change in hepatocytes in vivo. Exp. Mol. Pathol.83(2) , 160–168 (2007).
  • Ohoka N , HattoriT, KitagawaM, OnozakiK, HayashiH. Critical and functional regulation of CHOP (C/EBP homologous protein) through the N-terminal portion. J. Biol. Chem.282(49) , 35687–35694 (2007).
  • Donati G , ImbrianoC, MantovaniR. Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res.34(10) , 3116–3127 (2006).
  • Baumeister P , LuoS, SkarnesWCet al. Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol. Cell. Biol. 25(11) , 4529–4540 (2005).
  • Cherasse Y , ChaverouxC, JousseCet al. Role of the repressor JDP2 in the amino acid-regulated transcription of CHOP. FEBS Lett. 582(10) , 1537–1541 (2008).
  • Vidal R , CaballeroB, CouveA, HetzC. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington‘s disease. Curr. Mol. Med.11(1) , 1–12 (2011).
  • Reijonen S , PutkonenN, NorremolleA, LindholmD, KorhonenL. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp. Cell. Res.314(5) , 950–960 (2008).
  • Atwal RS , TruantR. A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy. Autophagy4(1) , 91–93 (2008).
  • Atwal RS , XiaJ, PinchevD, TaylorJ, EpandRM, TruantR. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet.16(21) , 2600–2615 (2007).
  • Yang H , LiuC, ZhongY, LuoS, MonteiroMJ, FangS. Huntingtin interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP. PLoS ONE5(1) , e8905 (2010).
  • Noh JY , LeeH, SongSet al. SCAMP5 links endoplasmic reticulum stress to the accumulation of expanded polyglutamine protein aggregates via endocytosis inhibition. J. Biol. Chem. 284(17) , 11318–11325 (2009).
  • Carnemolla A , FossaleE, AgostoniEet al. Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J. Biol. Chem. 284(27) , 18167–18173 (2009).
  • Fossale E , WheelerVC, VrbanacVet al. Identification of a presymptomatic molecular phenotype in Hdh CAG knock-in mice. Hum. Mol. Genet. 11(19) , 2233–2241 (2002).
  • Bennett EJ , ShalerTA, WoodmanBet al. Global changes to the ubiquitin system in Huntington‘s disease. Nature 448(7154) , 704–708 (2007).
  • Wang J , WangCE, OrrA, TydlackaS, LiSH, LiXI. Impaired ubiquitin-proteasome system activity in the synapses of Huntington‘s disease mice. J. Cell. Biol.180(6) , 1177–1189 (2008).
  • Oddo S . The ubiquitin-proteasome system in Alzheimer‘s disease. J. Cell. Mol. Med.12(2) , 363–373 (2008).
  • Menendez-Benito V , VerhoefLG, MasucciMG, DantumaNP. Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum. Mol. Genet.14(19) , 2787–2799 (2005).
  • Pandey UB , NieZ, BatleviYet al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146) , 859–863 (2007).
  • Lee JY , KogaH, KawaguchiYet al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29(5) , 969–980 (2010).
  • Kawaguchi Y , KovacsJJ, MclaurinA, VanceJM, ItoA, YaoTP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell115(6) , 727–738 (2003).
  • Boyault C , ZhangY, FritahSet al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes. Dev. 21(17) , 2172–2181 (2007).
  • Kwon S , ZhangY, MatthiasP. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes. Dev.21(24) , 3381–3394 (2007).
  • Matthias P , YoshidaM, KhochbinS. HDAC6 a new cellular stress surveillance factor. Cell. Cycle7(1) , 7–10 (2008).
  • Riederer BM , LeubaG, VernayA, RiedererIM. The role of the ubiquitin proteasome system in Alzheimer‘s disease. Exp. Biol. Med. (Maywood)236(3) , 268–276 (2011).
  • Gong B , CaoZ, ZhengPet al. Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4) , 775–788 (2006).
  • Hoozemans JJ , VeerhuisR, Van Haastert ES et al. The unfolded protein response is activated in Alzheimer‘s disease. Acta Neuropathol.110(2) , 165–172 (2005).
  • Hoozemans JJ , Van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W. The unfolded protein response is activated in pretangle neurons in Alzheimer‘s disease hippocampus. Am. J. Pathol.174(4) , 1241–1251 (2009).
  • Hoozemans JJ , StielerJ, Van Haastert ES et al. The unfolded protein response affects neuronal cell cycle protein expression: implications for Alzheimer‘s disease pathogenesis. Exp. Gerontol.41(4) , 380–386 (2006).
  • Copanaki E , SchurmannT, EckertAet al. The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion. Biochim. Biophys. Acta 1773(2) , 157–165 (2007).
  • Takahashi K , NiidomeT, AkaikeA, KiharaT, SugimotoH. Amyloid precursor protein promotes endoplasmic reticulum stress-induced cell death via C/EBP homologous protein-mediated pathway. J. Neurochem.109(5) , 1324–1337 (2009).
  • Nogalska A , EngelWK, AskanasV. Increased BACE1 mRNA and noncoding BACE1-antisense transcript in sporadic inclusion-body myositis muscle fibers – possibly caused by endoplasmic reticulum stress. Neurosci. Lett.474(3) , 140–143 (2010).
  • Rubenstein RC , ZeitlinPL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of ΔF508–CFTR. Am. J. Physiol. Cell. Physiol.278(2) , C259–C267 (2000).
  • Burrows JA , WillisLK, PerlmutterDH. Chemical chaperones mediate increased secretion of mutant α 1-antitrypsin (α 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α 1-AT deficiency. Proc. Natl Acad. Sci. USA97(4) , 1796–1801 (2000).
  • Qi X , HosoiT, OkumaY, KanekoM, NomuraY. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol. Pharmacol.66(4) , 899–908 (2004).
  • Vilatoba M , EcksteinC, BilbaoGet al. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery 138(2) , 342–351 (2005).
  • Mulhern M l, Madson CJ, Kador PF, Randazzo J, Shinohara T. Cellular osmolytes reduce lens epithelial cell death and alleviate cataract formation in galactosemic rats. Mol. Vis.13 , 1397–1405 (2007).
  • Bonapace G , WaheedA, ShahGN, SlyWS. Chemical chaperones protect from effects of apoptosis-inducing mutation in carbonic anhydrase IV identified in retinitis pigmentosa 17. Proc. Natl Acad. Sci. USA101(33) , 12300–12305 (2004).
  • Ozcan U , YilmazE, OzcanLet al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of Type 2 diabetes. Science 313(5790) , 1137–1140 (2006).
  • De Almeida SF , PicaroteG, FlemingJV, Carmo-FonsecaM, AzevedoJE, De Sousa M. Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation. J. Biol. Chem.282(38) , 27905–27912 (2007).
  • Kubota K , NiinumaY, KanekoMet al. Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J. Neurochem. 97(5) , 1259–1268 (2006).
  • Wang JF , BownC, YoungLT. Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78. Mol. Pharmacol.55(3) , 521–527 (1999).
  • Shao L , SunX, XuL, YoungLT, WangJF. Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells. Life Sci.78(12) , 1317–1323 (2006).
  • Cui J , ShaoL, YoungLT, WangJF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience144(4) , 1447–1453 (2007).
  • Boyault C , GilquinB, ZhangYet al. HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 25(14) , 3357–3366 (2006).
  • Gao YS , HubbertCC, LuJ, LeeYS, LeeJY, YaoTP. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol. Cell. Biol.27(24) , 8637–8647 (2007).
  • Kovacs JJ , MurphyPJ, GaillardSet al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell. 18(5) , 601–607 (2005).
  • Bali P , PranpatM, BradnerJet al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280(29) , 26729–26734 (2005).
  • Edwards A , LiJ, AtadjaP, BhallaK, HauraEB. Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor-dependent human lung cancer cells. Mol. Cancer Ther.6(9) , 2515–2524 (2007).
  • Fiskus W , RenY, MohapatraAet al. Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-α levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin. Cancer Res. 13(16) , 4882–4890 (2007).
  • Kong X , LinZ, LiangD, FathD, SangN, CaroJ. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Mol. Cell. Biol.26(6) , 2019–2028 (2006).
  • Scroggins BT , RobzykK, WangDet al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell. 25(1) , 151–159 (2007).
  • Wang Y , WangSY, ZhangXHet al. FK228 inhibits Hsp90 chaperone function in K562 cells via hyperacetylation of Hsp70. Biochem. Biophys. Res. Comm. 356(4) , 998–1003 (2007).
  • Johnson CA , WhiteDA, LavenderJS, O‘NeillLP, TurnerBM. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem.277(11) , 9590–9597 (2002).
  • Yam GH , Gaplovska-KyselaK, ZuberC, RothJ. Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis. Invest. Ophthalmol. Vis. Sci.48(4) , 1683–1690 (2007).
  • Liu X l, Done SC, Yan K, Kilpelainen P, Pikkarainen T, Tryggvason K. Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J. Am. Soc. Nephrol.15(7) , 1731–1738 (2004).
  • Yam GH , RothJ, ZuberC. 4-Phenylbutyrate rescues trafficking incompetent mutant α-galactosidase A without restoring its functionality. Biochem. Biophys. Res. Comm.360(2) , 375–380 (2007).
  • Datta R , WaheedA, ShahGN, SlyWS. Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc. Natl Acad. Sci. USA104(50) , 19989–19994 (2007).
  • Choo-Kang LR , ZeitlinPL. Induction of HSP70 promotes ΔF508 CFTR trafficking. Am. J. Physiol. Lung. Cell. Mol. Physiol.281(1) , L58–L68 (2001).
  • Cheong N , MadeshM, GonzalesLWet al. Functional and trafficking defects in ATP binding cassette A3 mutants associated with respiratory distress syndrome. J. Biol. Chem. 281(14) , 9791–9800 (2006).
  • Pearce I , HeathfieldKW, PearceMJ. Valproate sodium in Huntington chorea. Arch. Neurol.34(5) , 308–309 (1977).
  • Symington GR , LeonardDP, ShannonPJ, VajdaFJ. Sodium valproate in Huntington‘s disease. Am. J. Psychiatry135(3) , 352–354 (1978).
  • Saft C , LauterT, KrausPH, PrzuntekH, AndrichJE. Dose-dependent improvement of myoclonic hyperkinesia due to valproic acid in eight Huntington‘s disease patients: a case series. BMC Neurol.6 , 11 (2006).
  • Grove VE Jr, Quintanilla J, Devaney GT. Improvement of Huntington‘s disease with olanzapine and valproate. N. Engl J. Med.343(13) , 973–974 (2000).
  • US FDA, StatBite: FDA oncology drug product approvals in 2009. J. Natl Cancer Inst.102(4) , 219 (2010).
  • Mann BS , JohnsonJR, CohenMH, JusticeR, PazdurR. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist12(10) , 1247–1252 (2007).
  • Moser K , BiglanK, RossCet al. Inaugural Huntington disease clinical research symposium organized by the Huntington study group. Neurotherapeutics 5(2) , 362–375 (2008).
  • Hogarth P , LovrecicL, KraincD. Sodium phenylbutyrate in Huntington‘s disease: a dose-finding study. Mov. Disord.22(13) , 1962–1964 (2007).
  • Spannhoff A , KimYK, RaynalNJet al. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep. 12(3) , 238–243 (2011).
  • Link A , BalaguerF, GoelA. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem. Pharmacol.80(12) , 1771–1792 (2010).
  • Meeran SM , AhmedA, TollefsbolTO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin. Epigenetics1(3–4) , 101–116 (2010).
  • Huang J , PlassC, GerhauserC. Cancer chemoprevention by targeting the epigenome. Curr. Drug Targets (2010) (Epub ahead of print).
  • Dancik V , SeilerKP, YoungDW, SchreiberSL, ClemonsPA. Distinct biological network properties between the targets of natural products and disease genes. J. Am. Chem. Soc.132(27) , 9259–9261 (2010).
  • Lindvall O , KokaiaZ. Stem cells for the treatment of neurological disorders. Nature441(7097) , 1094–1096 (2006).
  • Zhang Y , WangJ, ChenG, FanD, DengM. Inhibition of sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells. Biochem. Biophys. Res. Comm.404(2) , 610–614 (2011).
  • Hisahara S , ChibaS, MatsumotoHet al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl Acad. Sci. USA 105(40) , 15599–15604 (2008).
  • Tursun B , PatelT, KratsiosP, HobertO. Direct conversion of C. elegans germ cells into specific neuron types. Science331(6015) , 304–308 (2011).
  • Harper SQ , StaberPD, HeXet al. RNA interference improves motor and neuropathological abnormalities in a Huntington‘s disease mouse model. Proc. Natl Acad. Sci. USA 102(16) , 5820–5825 (2005).
  • Difiglia M , Sena-EstevesM, ChaseKet al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc. Natl Acad. Sci. USA 104(43) , 17204–17209 (2007).
  • Drouet V , PerrinV, HassigRet al. Sustained effects of nonallele-specific Huntingtin silencing. Ann. Neurol. 65(3) , 276–285 (2009).
  • Boudreau RL , McbrideJL, MartinsLet al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington‘s disease mice. Mol. Ther. 17(6) , 1053–1063 (2009).
  • Van Bilsen PH , JaspersL, LombardiMS, OdekerkenJC, BurrightEN, KaemmererWF. Identification and allele-specific silencing of the mutant huntingtin allele in Huntington‘s disease patient-derived fibroblasts. Hum. Gene. Ther.19(7) , 710–719 (2008).
  • Takahashi M , WatanabeS, MurataMet al. Tailor-made RNAi knockdown against triplet repeat disease-causing alleles. Proc. Natl Acad. Sci. USA 107(50) , 21731–21736 (2010).
  • Pfister EL , KenningtonL, StraubhaarJet al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington‘s disease patients. Curr. Biol. 19(9) , 774–778 (2009).
  • Lombardi MS , JaspersL, SpronkmansCet al. A majority of Huntington‘s disease patients may be treatable by individualized allele-specific RNA interference. Exp. Neurol. 217(2) , 312–319 (2009).
  • Singer O , MarrRA, RockensteinEet al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 8(10) , 1343–1349 (2005).
  • Rodriguez-Lebron E , GouvionCM, MooreSA, DavidsonBL, PaulsonHL. Allele-specific RNAi mitigates phenotypic progression in a transgenic model of Alzheimer‘s disease. Mol. Ther.17(9) , 1563–1573 (2009).
  • Eacker SM , DawsonTM, DawsonVL. Understanding microRNAs in neurodegeneration. Nat. Rev. Neurosci.10(12) , 837–841 (2009).
  • Fabbri M , CalinGA. Epigenetics and miRNAs in human cancer. Adv. Genet.70 , 87–99 (2010).
  • Schonrock N , KeYD, HumphreysDet al. Neuronal microRNA deregulation in response to Alzheimer‘s disease amyloid-β. PLoS ONE 5(6) , e11070 (2010).
  • Saunders LR , SharmaAD, TawneyJet al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2(7) , 415–431 (2010).
  • Delaloy C , LiuL, LeeJAet al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell. Stem Cell 6(4) , 323–335 (2010).
  • Jing L , JiaY, LuJet al. MicroRNA-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by Notch signaling. Neuroreport 22(5) , 206–211 (2011).
  • Varambally S , CaoQ, ManiRSet al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908) , 1695–1699 (2008).
  • Vilardo E , BarbatoC, CiottiM, CogoniC, RubertiF. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem.285(24) , 18344–18351 (2010).
  • Long JM , LahiriDK. MicroRNA-101 downregulates Alzheimer‘s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Comm.404(4) , 889–895 (2011).
  • Noonan EJ , PlaceRF, PookotDet al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14) , 1714–1724 (2009).
  • Lize M , PilarskiS, DobbelsteinM. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell. Death Differ.17(3) , 452–458 (2010).
  • Gao J , WangWY, MaoYWet al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310) , 1105–1109 (2010).
  • Foust KD , NurreE, MontgomeryCL, HernandezA, ChanCM, KasparBK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol.27(1) , 59–65 (2009).
  • Zhang H , YangB, MuXet al. Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse CNS. Mol. Ther. DOI: 10.1038/mt.2011.98 (2011) (Epub ahead of print).
  • Xie J , XieQ, ZhangHet al. MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol. Ther. 19(3) , 526–535 (2011).
  • Miyake N , MiyakeK, YamamotoM, HiraiY, ShimadaT. Global gene transfer into the CNS across the BBB after neonatal systemic delivery of single-stranded AAV vectors. Brain Res.1389 , 19–26 (2011).
  • Kumar P , WuH, McbrideJLet al. Transvascular delivery of small interfering RNA to the CNS. Nature 448(7149) , 39–43 (2007).
  • Alvarez-Erviti L , SeowY, YinH, BettsC, LakhalS, WoodMJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol.29(4) , 341–345 (2011).
  • Pulford B , ReimN, BellAet al. Liposome-siRNA-peptide complexes cross the blood–brain barrier and significantly decrease PrP on neuronal cells and PrP in infected cell cultures. PLoS ONE 5(6) , e11085 (2010).
  • Martin L , LatypovaX, TerroF. Post-translational modifications of τ protein: implications for Alzheimer‘s disease. Neurochem. Int.58(4) , 458–471 (2011).
  • Gong B , ChenF, PanYet al. SCFFbx2-E3-ligase-mediated degradation of BACE1 attenuates Alzheimer‘s disease amyloidosis and improves synaptic function. Aging Cell 9(6) , 1018–1031 (2010).
  • Kim SH , LuHF, AlanoCC. Neuronal sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS ONE6(3) , e14731 (2011).
  • Mostoslavsky R , ChuaKF, LombardDBet al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2) , 315–329 (2006).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.