255
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance

, &
Pages 451-470 | Published online: 18 Aug 2011

Bibliography

  • Hsu PY , HsuHK, SingerGAet al. Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Res. 20(6) , 733–744 (2010).
  • Reik W . Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447(7143) , 425–432 (2007).
  • Berdasco M , EstellerM. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev. Cell19(5) , 698–711 (2010).
  • Jemal A , SiegelR, XuJ, WardE. Cancer statistics. CA Cancer J. Clin.60(5) , 277–300 (2010).
  • Thomas S , MunsterPN. Histone deacetylase inhibitor induced modulation of antiestrogen therapy. Cancer Lett.280(2) , 184–191 (2009).
  • Woodcock CL , GhoshRP. Chromatin higher-order structure and dynamics. Cold Spring Harb. Perspect. Biol.2(5) , a000596 (2010).
  • Pradhan S , BacollaA, WellsRD, RobertsRJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem.274(46) , 33002–33010 (1999).
  • Okano M , BellDW, HaberDA, LiE. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99(3) , 247–257 (1999).
  • Bird AP , WolffeAP. Methylation-induced repression – belts, braces, and chromatin. Cell99(5) , 451–454 (1999).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4) , 693–705 (2007).
  • Jenuwein T , AllisCD. Translating the histone code. Science293(5532) , 1074–1080 (2001).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell128(4) , 683–692 (2007).
  • Beisel C , ParoR. Silencing chromatin: comparing modes and mechanisms. Nat. Rev. Genet.12(2) , 123–135 (2011).
  • Lee RC , FeinbaumRL, AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5) , 843–854 (1993).
  • Reinhart BJ , SlackFJ, BassonMet al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772) , 901–906 (2000).
  • Hawkins PG , MorrisKV. RNA and transcriptional modulation of gene expression. Cell Cycle7(5) , 602–607 (2008).
  • Fabbri M , GarzonR, CimminoAet al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104(40) , 15805–15810 (2007).
  • Friedman JM , LiangG, LiuCCet al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69(6) , 2623–2629 (2009).
  • Noonan EJ , PlaceRF, PookotDet al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14) , 1714–1724 (2009).
  • Garzon R , LiuS, FabbriMet al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113(25) , 6411–6418 (2009).
  • Szulwach KE , LiX, SmrtRDet al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J. Cell Biol. 189(1) , 127–141 (2010).
  • Saito Y , LiangG, EggerGet al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6) , 435–443 (2006).
  • Furuta M , KozakiKI, TanakaS, AriiS, ImotoI, InazawaJ. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis31(5) , 766–776 (2010).
  • Di Leva G , GaspariniP, PiovanCet al. MicroRNA cluster 221–222 and estrogen receptor α interactions in breast cancer. J. Natl Cancer Inst. 102(10) , 706–721 (2010).
  • Tsai KW , KaoHW, ChenHC, ChenSJ, LinWC. Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics4(8) , 587–592 (2009).
  • Jones PA , TaylorSM. Cellular differentiation, cytidine analogs and DNA methylation. Cell20(1) , 85–93 (1980).
  • Issa JP , KantarjianHM. Targeting DNA methylation. Clin. Cancer Res.15(12) , 3938–3946 (2009).
  • Marks PA , RichonVM, RifkindRA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl Cancer Inst.92(15) , 1210–1216 (2000).
  • Thurn KT , ThomasS, MooreA, MunsterPN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol.7(2) , 263–283 (2011).
  • Thomas S , MillerA, ThurnKT, MunsterPN. Clinical applications of histone deacetylase inhibitors. In: Handbook of Epigenetics: N. Mol. Med. Genet. Tollefsbol T (Eds). Academic Press, London, UK, 597–615 (2011).
  • Hsu PY , DeatherageDE, RodriguezBAet al. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res. 69(14) , 5936–5945 (2009).
  • Clarke RB , HowellA, PottenCS, AndersonE. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res.57(22) , 4987–4991 (1997).
  • Sommer S , FuquaSA. Estrogen receptor and breast cancer. Semin. Cancer Biol.11(5) , 339–352 (2001).
  • Zilli M , GrassadoniaA, TinariNet al. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim. Biophys. Acta 1795(1) , 62–81 (2009).
  • Osborne CK , SchiffR, FuquaSA, ShouJ. Estrogen receptor: current understanding of its activation and modulation. Clin. Cancer Res.7(Suppl. 12) , 4338s–4342s; discussion 4411s–4412s (2001).
  • Merrell KW , CroftsJD, SmithRLet al. Differential recruitment of nuclear receptor coregulators in ligand-dependent transcriptional repression by estrogen receptor-α. Oncogene 30(13) , 1608–1614 (2011).
  • O‘Lone R , FrithMC, KarlssonEK, HansenU. Genomic targets of nuclear estrogen receptors. Mol. Endocrinol.18(8) , 1859–1875 (2004).
  • Marino M , GalluzzoP, AscenziP. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics7(8) , 497–508 (2006).
  • Wei LN , HuX, ChandraD, SetoE, FarooquiM. Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J. Biol. Chem.275(52) , 40782–40787 (2000).
  • Guenther MG , BarakO, LazarMA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol.21(18) , 6091–6101 (2001).
  • Levin ER . Cell localization, physiology, and nongenomic actions of estrogen receptors. J. Appl. Physiol.91(4) , 1860–1867 (2001).
  • Castoria G , MigliaccioA, BilancioAet al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J. 20(21) , 6050–6059 (2001).
  • Pedram A , RazandiM, SainsonRC, KimJK, HughesCC, LevinER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J. Biol. Chem.282(31) , 22278–22288 (2007).
  • Schiff R , MassarwehSA, ShouJet al. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemother. Pharmacol. 56(Suppl. 1) , 10–20 (2005).
  • Mcdonnell DP . The molecular pharmacology of estrogen receptor modulators: implications for the treatment of breast cancer. Clinical Cancer Res.11(2 Pt 2) , 871s–877s (2005).
  • Jordan VC . Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov.2(3) , 205–213 (2003).
  • Kato S , EndohH, MasuhiroYet al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241) , 1491–1494 (1995).
  • Kumar V , GreenS, StackG, BerryM, JinJR, ChambonP. Functional domains of the human estrogen receptor. Cell51(6) , 941–951 (1987).
  • Osborne CK . Tamoxifen in the treatment of breast cancer. N. Engl. J. Med.339(22) , 1609–1618 (1998).
  • Fawell SE , WhiteR, HoareS, SydenhamM, PageM, ParkerMG. Inhibition of estrogen receptor-DNA binding by the ‘pure‘ antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc. Natl Acad. Sci. USA87(17) , 6883–6887 (1990).
  • Dauvois S , DanielianPS, WhiteR, ParkerMG. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc. Natl Acad. Sci. USA89(9) , 4037–4041 (1992).
  • Dauvois S , WhiteR, ParkerMG. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J. Cell. Sci.106(Pt 4) , 1377–1388 (1993).
  • Kedar RP , BourneTH, PowlesTJet al. Effects of tamoxifen on uterus and ovaries of postmenopausal women in a randomised breast cancer prevention trial. Lancet 343(8909) , 1318–1321 (1994).
  • Anderson WF , ChatterjeeN, ErshlerWB, BrawleyOW. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res. Treat.76(1) , 27–36 (2002).
  • Sorlie T , TibshiraniR, ParkerJet al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100(14) , 8418–8423 (2003).
  • Sorlie T , PerouCM, TibshiraniRet al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98(19) , 10869–10874 (2001).
  • Hammond ME , HayesDF, WolffAC, ManguPB, TeminS. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Oncol. Pract.6(4) , 195–197 (2010).
  • Arpino G , WeissH, LeeAVet al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J. Natl Cancer Inst. 97(17) , 1254–1261 (2005).
  • Wolff AC , HammondME, SchwartzJNet al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol. 25(1) , 118–145 (2007).
  • Mcguire WL . Hormone receptors: their role in predicting prognosis and response to endocrine therapy. Semin. Oncol.5(4) , 428–433 (1978).
  • Zhang QX , BorgA, WolfDM, OesterreichS, FuquaSA. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res.57(7) , 1244–1249 (1997).
  • Tebbit CL , BentleyRC, OlsonJA Jr, Marks JR. Estrogen receptor α (ESR1) mutant A908G is not a common feature in benign and malignant proliferations of the breast. Genes Chromosomes Cancer40(1) , 51–54 (2004).
  • Nielsen KV , EjlertsenB, MullerSet al. Amplification of ESR1 may predict resistance to adjuvant tamoxifen in postmenopausal patients with hormone receptor positive breast cancer. Breast Cancer Res. Treat. 127(2) , 345–355 (2011).
  • Roodi N , BaileyLR, KaoWYet al. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J. Natl Cancer Inst. 87(6) , 446–451 (1995).
  • Al-Bader M , Al-SajiS, FordCH, FrancisI, Al-AyadhyB. Real-time PCR: detection of oestrogen receptor-α and -β isoforms and variants in breast cancer. Anticancer Res.30(10) , 4147–4156 (2010).
  • Ando Y , IwaseH, IchiharaSet al. Loss of heterozygosity and microsatellite instability in ductal carcinoma in situ of the breast. Cancer Lett. 156(2) , 207–214 (2000).
  • Parl FF , CavenerDR, DupontWD. Genomic DNA analysis of the estrogen receptor gene in breast cancer. Breast Cancer Res. Treat.14(1) , 57–64 (1989).
  • Otis CN , KrebsPA, AlbuquerqueAet al. Loss of heterozygosity of p53, BRCA1, VHL, and estrogen receptor genes in breast carcinoma: correlation with related protein products and morphologic features. Int. J. Surg. Pathol. 10(4) , 237–245 (2002).
  • Ottaviano YL , IssaJP, ParlFF, SmithHS, BaylinSB, DavidsonNE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res.54(10) , 2552–2555 (1994).
  • Macaluso M , CintiC, RussoG, RussoA, GiordanoA. pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-α in breast cancer. Oncogene22(23) , 3511–3517 (2003).
  • Sharma D , BlumJ, YangX, BeaulieuN, MacleodAR, DavidsonNE. Release of methyl CpG binding proteins and histone deacetylase 1 from the estrogen receptor α (ER) promoter upon reactivation in ER-negative human breast cancer cells. Mol. Endocrinol.19(7) , 1740–1751 (2005).
  • Wei M , XuJ, DignamJet al. Estrogen receptor α, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers. Breast Cancer Res. Treat. 111(1) , 113–120 (2008).
  • Kawai H , LiH, AvrahamS, JiangS, AvrahamHK. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor α. Int. J. Cancer107(3) , 353–358 (2003).
  • Lapidus RG , FergusonAT, OttavianoYLet al. Methylation of estrogen and progesterone receptor gene 5´ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin. Cancer Res. 2(5) , 805–810 (1996).
  • Hori M , IwasakiM, YoshimiF, AsatoY, ItabashiM. Hypermethylation of the estrogen receptor α gene is not related to lack of receptor protein in human breast cancer. Breast Cancer6(2) , 79–86 (1999).
  • Iwase H , OmotoY, IwataHet al. DNA methylation analysis at distal and proximal promoter regions of the oestrogen receptor gene in breast cancers. Br. J. Cancer 80(12) , 1982–1986 (1999).
  • Zhao L , WangL, JinFet al. Silencing of estrogen receptor α (ERα) gene by promoter hypermethylation is a frequent event in Chinese women with sporadic breast cancer. Breast Cancer Res. Treat. 117(2) , 253–259 (2009).
  • Girault I , TozluS, LidereauR, BiecheI. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin. Cancer Res.9(12) , 4415–4422 (2003).
  • Yoshida T , EguchiH, NakachiKet al. Distinct mechanisms of loss of estrogen receptor α gene expression in human breast cancer: methylation of the gene and alteration of trans-acting factors. Carcinogenesis 21(12) , 2193–2201 (2000).
  • Radojicic J , ZaravinosA, VrekoussisT, KafousiM, SpandidosDA, StathopoulosEN. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle10(3) , 507–517 (2011).
  • Hannafon BN , SebastianiP, De Las Morenas A, Lu J, Rosenberg CL. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res.13(2) , R24 (2011).
  • Bockmeyer CL , ChristgenM, MullerMet al. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res. Treat. DOI: 10.1007/s10549-010-1303-3 (2011) (Epub ahead of print).
  • Adams BD , FurneauxH, WhiteBA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol.21(5) , 1132–1147 (2007).
  • Zhao JJ , LinJ, YangHet al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283(45) , 31079–31086 (2008).
  • Pandey DP , PicardD. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor α mRNA. Mol. Cell. Biol.29(13) , 3783–3790 (2009).
  • Xiong J , YuD, WeiNet al. An estrogen receptor α suppressor, microRNA-22, is downregulated in estrogen receptor α-positive human breast cancer cell lines and clinical samples. FEBS J. 277(7) , 1684–1694 (2010).
  • Toi M , NakamuraT, MukaidaHet al. Relationship between epidermal growth factor receptor status and various prognostic factors in human breast cancer. Cancer 65(9) , 1980–1984 (1990).
  • Klijn JG , BernsPM, SchmitzPI, FoekensJA. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr. Rev.13(1) , 3–17 (1992).
  • Sharma AK , HorganK, Douglas-JonesA, McclellandR, GeeJ, NicholsonR. Dual immunocytochemical analysis of oestrogen and epidermal growth factor receptors in human breast cancer. Br. J. Cancer69(6) , 1032–1037 (1994).
  • Van Agthoven T , TimmermansM, FoekensJA, DorssersLC, Henzen-LogmansSC. Differential expression of estrogen, progesterone, and epidermal growth factor receptors in normal, benign, and malignant human breast tissues using dual staining immunohistochemistry. Am. J. Pathol.144(6) , 1238–1246 (1994).
  • Pietras RJ , ArboledaJ, ReeseDMet al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10(12) , 2435–2446 (1995).
  • Tang CK , PerezC, GruntT, WaibelC, ChoC, LupuR. Involvement of heregulin-β2 in the acquisition of the hormone-independent phenotype of breast cancer cells. Cancer Res.56(14) , 3350–3358 (1996).
  • Digiovanna MP , ChuP, DavisonTLet al. Active signaling by HER-2/neu in a subpopulation of HER-2/neu-overexpressing ductal carcinoma in situ: clinicopathological correlates. Cancer Res. 62(22) , 6667–6673 (2002).
  • Oh AS , LorantLA, HollowayJN, MillerDL, KernFG, El-AshryD. Hyperactivation of MAPK induces loss of ERα expression in breast cancer cells. Mol. Endocrinol.15(8) , 1344–1359 (2001).
  • Holloway JN , MurthyS, El-AshryD. A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-α down-regulation in breast cancer cells: the role of nuclear factor-κB. Mol. Endocrinol.18(6) , 1396–1410 (2004).
  • Bayliss J , HilgerA, VishnuP, DiehlK, El-AshryD. Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin. Cancer Res.13(23) , 7029–7036 (2007).
  • Nakshatri H , Bhat-NakshatriP, MartinDA, GouletRJ Jr, Sledge GW Jr. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol.17(7) , 3629–3639 (1997).
  • Adams BD , CoweeDM, WhiteBA. The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-α (ERα) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol. Endocrinol.23(8) , 1215–1230 (2009).
  • Van Den Berg HW , LynchM, MartinJ, NelsonJ, DicksonGR, CrockardAD. Characterisation of a tamoxifen-resistant variant of the ZR-75–71 human breast cancer cell line (ZR-75–9a1) and ability of the resistant phenotype. Br. J. Cancer59(4) , 522–526 (1989).
  • Long B , MckibbenBM, LynchM, Van Den Berg HW. Changes in epidermal growth factor receptor expression and response to ligand associated with acquired tamoxifen resistance or oestrogen independence in the ZR-75-71 human breast cancer cell line. Br. J. Cancer65(6) , 865–869 (1992).
  • Encarnacion CA , CioccaDR, McguireWL, ClarkGM, FuquaSA, OsborneCK. Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res. Treat.26(3) , 237–246 (1993).
  • Johnston SR , Saccani-JottiG, SmithIEet al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 55(15) , 3331–3338 (1995).
  • Kuukasjarvi T , KononenJ, HelinH, HolliK, IsolaJ. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J. Clin. Oncol.14(9) , 2584–2589 (1996).
  • Gutierrez MC , DetreS, JohnstonSet al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J. Clin.Oncol. 23(11) , 2469–2476 (2005).
  • Dworkin AM , HuangTH, TolandAE. Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin. Cancer. Biol.19(3) , 165–171 (2009).
  • Ellis MJ , TaoY, YoungOet al. Estrogen-independent proliferation is present in estrogen-receptor HER2-positive primary breast cancer after neoadjuvant letrozole. J. Clin. Oncol. 24(19) , 3019–3025 (2006).
  • Pettersson K , DelaunayF, GustafssonJA. Estrogen receptor β acts as a dominant regulator of estrogen signaling. Oncogene19(43) , 4970–4978 (2000).
  • Murphy LC , WatsonPH. Is oestrogen receptor-β a predictor of endocrine therapy responsiveness in human breast cancer? Endocr. Relat. Cancer13(2) , 327–334 (2006).
  • Paech K , WebbP, KuiperGGet al. Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science 277(5331) , 1508–1510 (1997).
  • Honma N , HoriiR, IwaseTet al. Clinical importance of estrogen receptor-β evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J. Clin. Oncol. 26(22) , 3727–3734 (2008).
  • Nair HB , KirmaNB, GanapathyM, VadlamudiRK, TekmalRR. Estrogen receptor-β activation in combination with letrozole blocks the growth of breast cancer tumors resistant to letrozole therapy. Steroids76(8) , 792–796 (2011).
  • Chang HG , KimSJ, ChungKWet al. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor β but not the estrogen receptor α gene. J. Mol. Med. 83(2) , 132–139 (2005).
  • Speirs V , MaloneC, WaltonDS, KerinMJ, AtkinSL. Increased expression of estrogen receptor β mRNA in tamoxifen-resistant breast cancer patients. Cancer Res.59(21) , 5421–5424 (1999).
  • Jensen EV , ChengG, PalmieriCet al. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. Proc. Natl Acad. Sci. USA 98(26) , 15197–15202 (2001).
  • Klinge CM , RiggsKA, WickramasingheNSet al. Estrogen receptor α 46 is reduced in tamoxifen resistant breast cancer cells and re-expression inhibits cell proliferation and estrogen receptor α 66-regulated target gene transcription. Mol. Cell. Endocrinol. 323(2) , 268–276 (2010).
  • Lin SL , YanLY, ZhangXTet al. ER-α36, a variant of ER-α, promotes tamoxifen agonist action in endometrial cancer cells via the MAPK/ERK and PI3K/Akt pathways. PLoS ONE 5(2) , e9013 (2010).
  • Luco RF , AlloM, SchorIE, KornblihttAR, MisteliT. Epigenetics in alternative pre-mRNA splicing. Cell144(1) , 16–26 (2011).
  • Zhou Y , YauC, GrayJWet al. Enhanced NF κ B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 7 , 59 (2007).
  • Osborne CK , BardouV, HoppTAet al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95(5) , 353–361 (2003).
  • Fleming FJ , MyersE, KellyGet al. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 57(10) , 1069–1074 (2004).
  • Mann M , CortezV, VadlamudiRK. Epigenetics of estrogen receptor signaling: role in hormonal cancer progression and therapy. Cancers3(2) , 1691–1707 (2011).
  • Lavinsky RM , JepsenK, HeinzelTet al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl Acad. Sci. USA 95(6) , 2920–2925 (1998).
  • Benz CC , ScottGK, SarupJCet al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res. Treat. 24(2) , 85–95 (1993).
  • Knowlden JM , HutchesonIR, JonesHEet al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144(3) , 1032–1044 (2003).
  • Stal O , BorgA, FernoM, KallstromAC, MalmstromP, NordenskjoldB. ErbB2 status and the benefit from two or five years of adjuvant tamoxifen in postmenopausal early stage breast cancer. Ann. Oncol.11(12) , 1545–1550 (2000).
  • De Laurentiis M , ArpinoG, MassarelliEet al. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin. Cancer Res. 11(13) , 4741–4748 (2005).
  • Romond EH , PerezEA, BryantJet al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353(16) , 1673–1684 (2005).
  • Pietras RJ , Marquez-GarbanDC. Membrane-associated estrogen receptor signaling pathways in human cancers. Clin. Cancer Res.13(16) , 4672–4676 (2007).
  • Fan P , WangJ, SantenRJ, YueW. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor α out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res.67(3) , 1352–1360 (2007).
  • Yang Z , BarnesCJ, KumarR. Human epidermal growth factor receptor 2 status modulates subcellular localization of and interaction with estrogen receptor α in breast cancer cells. Clin. Cancer Res.10(11) , 3621–3628 (2004).
  • Chung YL , SheuML, YangSC, LinCH, YenSH. Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int. J. Cancer97(3) , 306–312 (2002).
  • Chong K , SubramanianA, SharmaA, MokbelK. Measuring IGF-1, ER-α and EGFR expression can predict tamoxifen-resistance in ER-positive breast cancer. Anticancer Res.31(1) , 23–32 (2011).
  • Skliris GP , NugentZJ, RowanBG, PennerCR, WatsonPH, MurphyLC. A phosphorylation code for oestrogen receptor-α predicts clinical outcome to endocrine therapy in breast cancer. Endocr. Relat. Cancer17(3) , 589–597 (2010).
  • Murphy LC , SeekalluSV, WatsonPH. Clinical significance of estrogen receptor phosphorylation. Endocr. Relat. Cancer18(1) , R1–R14 (2011).
  • Allen KE , WeissGJ. Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol. Cancer Ther.9(12) , 3126–3136 (2010).
  • Miller TE , GhoshalK, RamaswamyBet al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283(44) , 29897–29903 (2008).
  • Rao X , Di Leva G, Li M et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene30(9) , 1082–1097 (2011).
  • Kim SJ , KangHS, JungSYet al. Methylation patterns of genes coding for drug-metabolizing enzymes in tamoxifen-resistant breast cancer tissues. J. Mol. Med. 88(11) , 1123–1131 (2010).
  • Khan S , KumagaiT, VoraJet al.PTEN promoter is methylated in a proportion of invasive breast cancers. Int. J. Cancer112(3) , 407–410 (2004).
  • Shoman N , KlassenS, McfaddenA, BickisMG, TorlakovicE, ChibbarR. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Modern Pathol.18(2) , 250–259 (2005).
  • Phuong NT , KimSK, LimSCet al. Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells. Breast Cancer Res. Treat. DOI: 10.1007/s10549-010-1304-2 (2010).
  • Waltersson MA , AskmalmMS, NordenskjoldB, FornanderT, SkoogL, StalO. Altered expression of cyclin E and the retinoblastoma protein influences the effect of adjuvant therapy in breast cancer. Int. J. Oncol.34(2) , 441–448 (2009).
  • Butt AJ , McneilCM, MusgroveEA, SutherlandRL. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr. Relat. Cancer12(Suppl. 1) , S47–S59 (2005).
  • Miller TW , BalkoJM, GhazouiZet al. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin. Cancer Res. 17(7) , 2024–2034 (2011).
  • Barone I , BruscoL, GuGet al. Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. J. Natl Cancer Inst. 103(7) , 538–552 (2011).
  • Leu YW , YanPS, FanMet al. Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res. 64(22) , 8184–8192 (2004).
  • Murphy LC , LeygueE, NiuY, SnellL, HoSM, WatsonPH. Relationship of coregulator and oestrogen receptor isoform expression to de novo tamoxifen resistance in human breast cancer. Br. J. Cancer87(12) , 1411–1416 (2002).
  • Shi L , DongB, LiZet al. Expression of ER-{α}36, a novel variant of estrogen receptor {α}, and resistance to tamoxifen treatment in breast cancer. J. Clin. Oncol. 27(21) , 3423–3429 (2009).
  • Shou J , MassarwehS, OsborneCKet al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96(12) , 926–935 (2004).
  • Ferguson AT , LapidusRG, BaylinSB, DavidsonNE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res.55(11) , 2279–2283 (1995).
  • Yang X , FergusonAT, NassSJet al. Transcriptional activation of estrogen receptor α in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 60(24) , 6890–6894 (2000).
  • Bovenzi V , MomparlerRL. Antineoplastic action of 5-aza-2´-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor β and estrogen receptor α genes in breast carcinoma cells. Cancer Chemother. Pharmacol.48(1) , 71–76 (2001).
  • Yang X , PhillipsDL, FergusonAT, NelsonWG, HermanJG, DavidsonNE. Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res.61(19) , 7025–7029 (2001).
  • Keen JC , YanL, MackKMet al. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor α (ER) in ER negative human breast cancer cells in combination with 5-aza 2´-deoxycytidine. Breast Cancer Res. Treat. 81(3) , 177–186 (2003).
  • Zhou Q , AtadjaP, DavidsonNE. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor α (ER) gene expression without loss of DNA hypermethylation. Cancer Biol. Ther.6(1) , 64–69 (2007).
  • Fan J , YinWJ, LuJSet al. ER α negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J. Cancer Res. Clin. Oncol. 134(8) , 883–890 (2008).
  • Travaglini L , VianL, BilliM, GrignaniF, NerviC. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int. J. Biochem. Cell. Biol.41(1) , 225–234 (2009).
  • Scott GK , MardenC, XuF, KirkL, BenzCC. Transcriptional repression of ErbB2 by histone deacetylase inhibitors detected by a genomically integrated ErbB2 promoter-reporting cell screen. Mol. Cancer Ther.1(6) , 385–392 (2002).
  • Bruzzese F , LeoneA, RoccoMet al. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J. Cell. Physiol. 226(9) , 2378–2390 (2011).
  • Wedel S , HudakL, SeibelJMet al. Inhibitory effects of the HDAC inhibitor valproic acid on prostate cancer growth are enhanced by simultaneous application of the mTOR inhibitor RAD001. Life Sci. 88(9–10) , 418–424 (2011).
  • Chou CW , WuMS, HuangWC, ChenCC. HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS ONE6(3) , e18087 (2011).
  • Drummond DC , MarxC, GuoZet al. Enhanced pharmacodynamic and antitumor properties of a histone deacetylase inhibitor encapsulated in liposomes or ErbB2-targeted immunoliposomes. Clin. Cancer Res. 11(9) , 3392–3401 (2005).
  • Scott GK , MarxC, BergerCEet al. Destabilization of ERBB2 transcripts by targeting 3´ untranslated region messenger RNA associated HuR and histone deacetylase-6. Mol. Cancer Res. 6(7) , 1250–1258 (2008).
  • Zhou Q , ShawPG, DavidsonNE. Inhibition of histone deacetylase suppresses EGF signaling pathways by destabilizing EGFR mRNA in ER-negative human breast cancer cells. Breast Cancer Res. Treat.117(2) , 443–451 (2009).
  • Reid G , HubnerMR, MetivierRet al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol. Cell 11(3) , 695–707 (2003).
  • Reid G , MetivierR, LinCYet al. Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor α, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24(31) , 4894–4907 (2005).
  • Bicaku E , MarchionDC, SchmittM, MunsterPN. Selective inhibition of histone deacetylase 2 silences progesterone receptor mediated signaling. Cancer Res.68(5) , 1513–1519 (2008).
  • Hodges-Gallagher L , ValentineCD, BaderSE, KushnerPJ. Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res. Treat.105(3) , 297–309 (2007).
  • Hirokawa Y , ArnoldM, NakajimaH, ZalcbergJ, MarutaH. Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance. Cancer Biol. Ther.4(9) , 956–960, (2005).
  • Thomas S , ThurnKT, BicakuE, MarchionDC, MunsterPN. Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy. Breast Cancer Res. Treat. DOI: 10.1007/s10549-011-1364-y (2011) (Epub ahead of print).
  • Zuo T , LiuTM, LanXet al. Epigenetic silencing mediated through activated PI3K/AKT signaling in breast cancer. Cancer Res. 71(5) , 1752–1762 (2011).
  • Fuino L , BaliP, WittmannSet al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther. 2(10) , 971–984 (2003).
  • Campone M , ConteP, AmadoriDet al. Phase I trial of panobinostat (LBH589) in combination with trastuzumab in pretreated HER2-positive metastatic breast cancer (mBC): preliminary safety, efficacy and pharmacokinetic results. Cancer Res. 69(Suppl. 24) , 6101–6101 (2010).
  • Fan M , YanPS, Hartman-FreyCet al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res. 66(24) , 11954–11966 (2006).
  • Rodriguez BA , ChengAS, YanPSet al. Epigenetic repression of the estrogen-regulated homeobox B13 gene in breast cancer. Carcinogenesis 29(7) , 1459–1465 (2008).
  • Okuda H , ToyotaM, IshidaWet al. Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma. Oncogene 25(12) , 1733–1742 (2006).
  • Muthusamy V , DuraisamyS, BradburyCMet al. Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 66(23) , 11187–11193 (2006).
  • Iorns E , TurnerNC, ElliottRet al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13(2) , 91–104 (2008).
  • Munster PN , ThurnKT, ThomasSet al. A Phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer 104(12) , 1828–1835 (2011).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.