5,789
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenomics of leukemia: from mechanisms to therapeutic applications

, , , &
Pages 581-609 | Published online: 13 Oct 2011

Bibliography

  • Dohner H , StilgenbauerS, FischerK, SchroderM, BentzM, LichterP. Diagnosis and monitoring of chromosome aberrations in hematological malignancies by fluorescence in situ hybridization. Stem Cells13(Suppl. 3) , 76–82 (1995).
  • Codony C , CrespoM, AbrisquetaP, MontserratE, BoschF. Gene expression profiling in chronic lymphocytic leukaemia. Best Pract. Res. Clin. Haematol.22(2) , 211–222 (2009).
  • Pekarsky Y , ZanesiN, CroceCM. Molecular basis of CLL. Semin. Cancer Biol.20(6) , 370–376 (2010).
  • Calin GA , DumitruCD, ShimizuMet al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99(24) , 15524–15529 (2002).
  • Zenz T , KroberA, SchererKet al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112(8) , 3322–3329 (2008).
  • Perrotti D , JamiesonC, GoldmanJ, SkorskiT. Chronic myeloid leukemia: mechanisms of blastic transformation. 120(7) , 2254–2264 (2010).
  • Chen Y , PengC, SullivanC, LiD, LiS. Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia24(9) , 1545–1554 (2010).
  • Mrûzek K , HarperDP, AplanPD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol. Oncol. Clin. North Am.23(5) , 991–1010 (2009).
  • Martens JHA , StunnenbergHG. The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Lett.584(12) , 2662–2669 (2010).
  • Hatziapostolou M , IliopoulosD. Epigenetic aberrations during oncogenesis. Cell Mol. Life Sci.68(10) , 1681–1702 (2011).
  • Galm O , HermanJG, BaylinSB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev.20(1) , 1–13 (2006).
  • Chen J , OdenikeO, RowleyJD. Leukaemogenesis: more than mutant genes. Nat. Rev. Cancer10(1) , 23–36 (2010).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell128(4) , 683–692 (2007).
  • Ting AH , McgarveyKM, BaylinSB. The cancer epigenome – components and functional correlates. Genes Dev.20(23) , 3215–3231 (2006).
  • Esteller M . Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet.16(Spec. No. 1) , R50–R59 (2007).
  • Portela A , EstellerM. Epigenetic modifications and human disease. Nat. Biotechnol.28(10) , 1057–1068 (2010).
  • Straussman R , NejmanD, RobertsDet al. Developmental programming of CpG island methylation profiles in the human genome. Nat. Struct. Mol. Biol. 16(5) , 564–571 (2009).
  • Barakat TS , JonkersI, MonkhorstK, GribnauJ. X-changing information on X inactivation. Exp. Cell Res.316(5) , 679–687 (2010).
  • Wilkins JF . Genomic imprinting and methylation: epigenetic canalization and conflict. Trends Genet.21(6) , 356–365 (2005).
  • Goodier JL , KazazianHH Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell135(1) , 23–35 (2008).
  • Berger SL . The complex language of chromatin regulation during transcription. Nature447(7143) , 407–412 (2007).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4) , 693–705 (2007).
  • Baylin SB . DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol.2(Suppl. 1) , S4–S11 (2005).
  • Issa JP , ZehnbauerBA, KaufmannSH, BielMA, BaylinSB. HIC1 hypermethylation is a late event in hematopoietic neoplasms. Cancer Res.57(9) , 1678–1681 (1997).
  • Strathdee G , HolyoakeTL, SimAet al. Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin. Cancer Res. 13(17) , 5048–5055 (2007).
  • Plass C , YuF, YuLet al. Restriction landmark genome scanning for aberrant methylation in primary refractory and relapsed acute myeloid leukemia; involvement of the WIT-1 gene. Oncogene 18(20) , 3159–3165 (1999).
  • Cameron EE , BaylinSB, HermanJG. p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood94(7) , 2445–2451 (1999).
  • Wong IH , NgMH, HuangDP, LeeJC. Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood95(6) , 1942–1949 (2000).
  • Asimakopoulos FA , ShteperPJ, KrichevskySet al. ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood 94(7) , 2452–2460 (1999).
  • Mills KI , GuinnBA, WalshVA, BurnettAK. Increasing methylation of the calcitonin gene during disease progression in sequential samples from CML patients. Leuk. Res.20(9) , 771–775 (1996).
  • Issa JP , ZehnbauerBA, CivinCIet al. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res. 56(5) , 973–977 (1996).
  • San Jose-Eneriz E , AgirreX, Jimenez-VelascoAet al. Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia. Eur. J. Cancer 45(10) , 1877–1889 (2009).
  • Roman-Gomez J , CastillejoJA, JimenezAet al. 5´ CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99(7) , 2291–2296 (2002).
  • Roman J , CastillejoJA, JimenezAet al. Hypermethylation of the calcitonin gene in acute lymphoblastic leukaemia is associated with unfavourable clinical outcome. Br. J. Haematol. 113(2) , 329–338 (2001).
  • Shteper PJ , SiegfriedZ, AsimakopoulosFAet al. ABL1 methylation in Ph-positive ALL is exclusively associated with the P210 form of BCR–ABL. Leukemia 15(4) , 575–582 (2001).
  • Montserrat E . New prognostic markers in CLL. Hematol. Am. Soc. Hematol. Educ. Program279–284 (2006).
  • Corcoran M , ParkerA, OrchardJet al. ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica 90(8) , 1078–1088 (2005).
  • Raval A , LucasDM, MatkovicJJet al. TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J. Clin. Oncol. 23(17) , 3877–3885 (2005).
  • Irving L , Mainou-FowlerT, ParkerA, IbbotsonRE, OscierDG, StrathdeeG. Methylation markers identify high risk patients in IGHV mutated chronic lymphocytic leukemia. Epigenetics6(3) , 300–306 (2011).
  • Strathdee G , SimA, ParkerA, OscierD, BrownR. Promoter hypermethylation silences expression of the HoxA4 gene and correlates with IgVh mutational status in CLL. Leukemia20(7) , 1326–1329 (2006).
  • Mizuno S , ChijiwaT, OkamuraTet al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97(5) , 1172–1179 (2001).
  • Di Croce L , RakerVA, CorsaroMet al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557) , 1079–1082 (2002).
  • Narducci MG , PescarmonaE, LazzeriCet al. Regulation of TCL1 expression in B- and T-cell lymphomas and reactive lymphoid tissues. Cancer Res. 60(8) , 2095–2100 (2000).
  • Yuille MR , CondieA, StoneEMet al. TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer 30(4) , 336–341 (2001).
  • Carney DA , WierdaWG. Genetics and molecular biology of chronic lymphocytic leukemia. Curr. Treat. Options Oncol.6(3) , 215–225 (2005).
  • Melki JR , ClarkSJ. DNA methylation changes in leukaemia. Semin. Cancer Biol.12(5) , 347–357 (2002).
  • Roman-Gomez J , Jimenez-VelascoA, AgirreXet al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24(48) , 7213–7223 (2005).
  • Roman-Gomez J , Jimenez-VelascoA, AgirreXet al. Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica 92(2) , 153–162 (2007).
  • Rogers SL , ZhaoY, JiangX, EavesCJ, MagerDL, RouhiA. Expression of the leukemic prognostic marker CD7 is linked to epigenetic modifications in chronic myeloid leukemia. Mol. Cancer9 , 41 (2010).
  • Ley TJ , DingL, WalterMJet al.DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med.363(25) , 2424–2433 (2010).
  • Shah MY , LichtJD. DNMT3A mutations in acute myeloid leukemia. Nat. Genet.43(4) , 289–290 (2011).
  • Yamashita Y , YuanJ, SuetakeIet al. Array-based genomic resequencing of human leukemia. Oncogene 29(25) , 3723–3731 (2010).
  • Figueroa ME , Abdel-WahabO, LuCet al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6) , 553–567 (2010).
  • Brecqueville M , CerveraN, Gelsi-BoyerVet al. Rare mutations in DNMT3A in myeloproliferative neoplasms and myelodysplastic syndromes. Blood Cancer J. 1 , 1–2 (2011).
  • Watt PM , KumarR, KeesUR. Promoter demethylation accompanies reactivation of the HOX11 proto-oncogene in leukemia. Genes Chromosomes Cancer29(4) , 371–377 (2000).
  • Piekarz RL , BatesSE. Epigenetic modifiers: basic understanding and clinical development. Clin. Cancer Res.15(12) , 3918–3926 (2009).
  • Grovdal M , KarimiM, KhanRet al. Maintenance treatment with azacytidine for patients with high-risk myelodysplastic syndromes (MDS) or acute myeloid leukaemia following MDS in complete remission after induction chemotherapy. Br. J. Haematol. 150(3) , 293–302 (2010).
  • Khan R , Schmidt-MendeJ, KarimiMet al. Hypomethylation and apoptosis in 5-azacytidine-treated myeloid cells. Exp. Hematol. 36(2) , 149–157 (2008).
  • Schmelz K , SattlerN, WagnerM, LubbertM, DorkenB, TammI. Induction of gene expression by 5-aza-2´-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia19(1) , 103–111 (2005).
  • Pinto A , AttadiaV, FuscoA, FerraraF, SpadaOA, Di Fiore PP. 5-aza-2´-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood64(4) , 922–929 (1984).
  • Yang Q , ShanL, YoshimuraGet al. 5-aza-2´-deoxycytidine induces retinoic acid receptor β 2 demethylation, cell cycle arrest and growth inhibition in breast carcinoma cells. Anti Cancer Res. 22(5) , 2753–2756 (2002).
  • Schnekenburger M , GrandjenetteC, GhelfiJet al. Sustained exposure to the DNA demethylating agent, 2´-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochem. Pharmacol. 81(3) , 364–378 (2011).
  • Martin C , ZhangY. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol.6(11) , 838–849 (2005).
  • Di Gennaro E , BruzzeseF, CaragliaM, AbruzzeseA, BudillonA. Acetylation of proteins as novel target for antitumor therapy: review article. Amino Acids26(4) , 435–441 (2004).
  • Hodawadekar SC , MarmorsteinR. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene26(37) , 5528–5540 (2007).
  • Close P , CreppeC, GillardMet al. The emerging role of lysine acetylation of non-nuclear proteins. Cell Mol. Life Sci. 67(8) , 1255–1264 (2010).
  • Hildmann C , RiesterD, SchwienhorstA. Histone deacetylases – an important class of cellular regulators with a variety of functions. Appl. Microbiol. Biotechnol.75(3) , 487–497 (2007).
  • Gallinari P , Di Marco S, Jones P, Pallaoro M, Steinkuhler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res.17(3) , 195–211 (2007).
  • Warrell RP Jr, Frankel SR, Miller WH Jr et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med.324(20) , 1385–1393 (1991).
  • Minucci S , CioceM, MaccaranaM, PelicciPG. The APL-associated fusion proteins. Haematologica84(Suppl. EHA-4) , 70–71 (1999).
  • Lin RJ , EvansRM. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol. Cell5(5) , 821–830 (2000).
  • Minucci S , NerviC, Lo Coco F, Pelicci PG. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene20(24) , 3110–3115 (2001).
  • Warrell RP Jr, He LZ, Richon V, Calleja E, Pandolfi PP. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl Cancer. Inst.90(21) , 1621–1625 (1998).
  • He LZ , TolentinoT, GraysonPet al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J. Clin. Invest. 108(9) , 1321–1330 (2001).
  • Tickenbrock L , KleinHU, TrentoCet al. Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival. Leuk. Res. 35(5) , 620–625 (2011).
  • Martens JH , BrinkmanAB, SimmerFet al. PML–RARα/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17(2) , 173–185 (2010).
  • Bradbury CA , KhanimFL, HaydenRet al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19(10) , 1751–1759 (2005).
  • Moreno DA , ScrideliCA, CortezMAet al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 150(6) , 665–673 (2010).
  • Advani AS , GibsonSE, DouglasEet al. Histone H4 acetylation by immunohistochemistry and prognosis in newly diagnosed adult acute lymphoblastic leukemia (ALL) patients. BMC Cancer 10 , 387 (2010).
  • Di Croce L . Chromatin modifying activity of leukaemia associated fusion proteins. Hum. Mol. Genet.14(Spec. No. 1) , R77–R84 (2005).
  • Wang GG , AllisCD, ChiP. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol. Med.13(9) , 363–372 (2007).
  • Mullighan CG , ZhangJ, KasperLHet al.CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature471(7337) , 235–239 (2011).
  • Copeland RA , SolomonME, RichonVM. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov.8(9) , 724–732 (2009).
  • Tsukada Y , FangJ, Erdjument-BromageHet al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078) , 811–816 (2006).
  • Cloos PA , ChristensenJ, AggerK, HelinK. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev.22(9) , 1115–1140 (2008).
  • Hublitz P , AlbertM, PetersAH. Mechanisms of transcriptional repression by histone lysine methylation. Int. J. Dev. Biol.53(2–3) , 335–354 (2009).
  • Miremadi A , OestergaardMZ, PharoahPD, CaldasC. Cancer genetics of epigenetic genes. Hum. Mol. Genet.16(Spec. No. 1) , R28–R49 (2007).
  • Albert M , HelinK. Histone methyltransferases in cancer. Semin. Cell. Dev. Biol.21(2) , 209–220 (2010).
  • Hess JL . MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med.10(10) , 500–507 (2004).
  • Okada Y , FengQ, LinYet al. hDOT1L links histone methylation to leukemogenesis. Cell 121(2) , 167–178 (2005).
  • Krivtsov AV , FengZ, LemieuxMEet al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14(5) , 355–368 (2008).
  • Chang MJ , WuH, AchilleNJet al. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res. 70(24) , 10234–10242 (2010).
  • Nebral K , KonigM, SchmidtHHet al. Screening for NUP98 rearrangements in hematopoietic malignancies by fluorescence in situ hybridization. Haematologica 90(6) , 746–752 (2005).
  • Wang GG , CaiL, PasillasMP, KampsMP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat. Cell Biol.9(7) , 804–812 (2007).
  • Rosati R , La Starza R, Veronese A et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11) (p11. 2;p15). Blood99(10) , 3857–3860 (2002).
  • Simon JA . Chromatin compaction at Hox loci: a polycomb tale beyond histone tails. Mol. Cell38(3) , 321–322 (2010).
  • Lange CA . Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res.647(1–2) , 21–29 (2008).
  • Sasaki D , ImaizumiY, HasegawaHet al. Overexpression of enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica 96(5) , 712–719 (2011).
  • Ernst T , ChaseAJ, ScoreJet al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42(8) , 722–726 (2010).
  • Marteau JB , RigaudO, BrugatTet al. Concomitant heterochromatinisation and down-regulation of gene expression unveils epigenetic silencing of RELB in an aggressive subset of chronic lymphocytic leukemia in males. BMC Med. Genomics 3 , 53 (2010).
  • Varier RA , TimmersHT. Histone lysine methylation and demethylation pathways in cancer. Biochim. Biophys. Acta1815(1) , 75–89 (2011).
  • He J , NguyenAT, ZhangY. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood117(14) , 3869–3880 (2011).
  • Hu X , LiX, ValverdeKet al. LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc. Natl Acad. Sci. USA 106(25) , 10141–10146 (2009).
  • Altucci L , ClarkeN, NebbiosoA, ScognamiglioA, GronemeyerH. Acute myeloid leukemia: therapeutic impact of epigenetic drugs. Int. J. Biochem. Cell Biol.37(9) , 1752–1762 (2005).
  • Leone G , D‘AloF, ZardoG, VosoMT, NerviC. Epigenetic treatment of myelodysplastic syndromes and acute myeloid leukemias. Curr. Med. Chem.15(13) , 1274–1287 (2008).
  • Marks PA . Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim. Biophys. Acta1799(10–12) , 717–725 (2010).
  • Prince HM , BishtonMJ, HarrisonSJ. Clinical studies of histone deacetylase inhibitors. Clin. Cancer Res.15(12) , 3958–3969 (2009).
  • Quintas-Cardama A , SantosFP, Garcia-ManeroG. Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia25(2) , 226–235 (2011).
  • Zain J , O‘ConnorOA. Targeting histone deacetyalses in the treatment of B- and T-cell malignancies. Invest. New Drugs28(Suppl. 1) , S58–S78 (2010).
  • Mercurio C , MinucciS, PelicciPG. Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol. Res.62(1) , 18–34 (2010).
  • Gore SD , WengLJ, ZhaiSet al. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res. 7(8) , 2330–2339 (2001).
  • Batova A , ShaoLE, DiccianniMBet al. The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines. Blood 100(9) , 3319–3324 (2002).
  • Chateauvieux S , MorceauF, DicatoM, DiederichM. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol.pii , 479364 (2010).
  • Handoko KB , SouvereinPC, Van Staa TP et al. Risk of aplastic anemia in patients using antiepileptic drugs. Epilepsia47(7) , 1232–1236 (2006).
  • Chateauvieux S , EifesS, MorceauFet al. Valproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway. Biochem. Pharmacol. 81(4) , 498–509 (2011).
  • Gao S , MobleyA, MillerC, BoklanJ, ChandraJ. Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk. Res.32(5) , 771–780 (2008).
  • Gojo I , JiemjitA, TrepelJBet al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109(7) , 2781–2790 (2007).
  • Blum KA , AdvaniA, FernandezLet al. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br. J. Haematol. 147(4) , 507–514 (2009).
  • Inoue S , MaiA, DyerMJ, CohenGM. Inhibition of histone deacetylase class I but not class II is critical for the sensitization of leukemic cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res.66(13) , 6785–6792 (2006).
  • Vernarecci S , TosiF, FileticiP. Tuning acetylated chromatin with HAT inhibitors: a novel tool for therapy. Epigenetics5(2) , 105–111 (2010).
  • Bowers EM , YanG, MukherjeeCet al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol. 17(5) , 471–482 (2010).
  • Ott M , VerdinE. HAT trick: p300, small molecule, inhibitor. Chem. Biol.17(5) , 417–418 (2010).
  • Mori S , IwaseK, IwanamiN, TanakaY, KagechikaH, HiranoT. Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9. Bioorg. Med. Chem.18(23) , 8158–8166 (2010).
  • Greiner D , BonaldiT, EskelandR, RoemerE, ImhofA. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol.1(3) , 143–145 (2005).
  • Iwasa E , HamashimaY, FujishiroSet al. Total synthesis of (+)-chaetocin and its analogues: their histone methyltransferase G9a inhibitory activity. J. Am. Chem. Soc. 132(12) , 4078–4079 (2010).
  • Lakshmikuttyamma A , ScottSA, DecoteauJF, GeyerCR. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene29(4) , 576–588 (2010).
  • Kubicek S , O‘SullivanRJ, AugustEMet al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell. 25(3) , 473–481 (2007).
  • Chang Y , ZhangX, HortonJRet al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16(3) , 312–317 (2009).
  • Chang Y , GaneshT, HortonJRet al. Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J. Mol. Biol. 400(1) , 1–7 (2010).
  • Liu F , ChenX, Allali-HassaniAet al. Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J. Med. Chem. 52(24) , 7950–7953 (2009).
  • Liu F , ChenX, Allali-HassaniAet al. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J. Med. Chem. 53(15) , 5844–5857 (2010).
  • Tan J , YangX, ZhuangLet al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21(9) , 1050–1063 (2007).
  • Fiskus W , WangY, SreekumarAet al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114(13) , 2733–2743 (2009).
  • Lee MG , WynderC, SchmidtDM, McCaffertyDG, ShiekhattarR. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol.13(6) , 563–567 (2006).
  • Schmidt DM , MccaffertyDG. Trans-2-phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry46(14) , 4408–4416 (2007).
  • Mimasu S , UmezawaN, SatoS, HiguchiT, UmeharaT, YokoyamaS. Structurally designed trans-2-phenylcyclopropylamine derivatives potently inhibit histone demethylase LSD1/KDM1. Biochemistry49(30) , 6494–6503 (2010).
  • Binda C , ValenteS, RomanenghiMet al. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J. Am. Chem. Soc. 132(19) , 6827–6833 (2010).
  • Szewczuk LM , CulhaneJC, YangM, MajumdarA, YuH, ColePA. Mechanistic analysis of a suicide inactivator of histone demethylase LSD1. Biochemistry46(23) , 6892–6902 (2007).
  • Ueda R , SuzukiT, MinoKet al. Identification of cell-active lysine specific demethylase 1-selective inhibitors. J. Am. Chem. Soc. 131(48) , 17536–17537 (2009).
  • Sharma SK , WuY, SteinbergsNet al. (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J. Med. Chem. 53(14) , 5197–5212 (2010).
  • Hou H , YuH. Structural insights into histone lysine demethylation. Curr. Opin. Struct. Biol.20(6) , 739–748 (2010).
  • Hamada S , SuzukiT, MinoKet al. Design, synthesis, enzyme-inhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors. J. Med. Chem. 53(15) , 5629–5638 (2010).
  • King ON , LiXS, SakuraiMet al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS ONE 5(11) , e15535 (2010).
  • Rose NR , WoonEC, KinghamGLet al. Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches. J. Med. Chem. 53(4) , 1810–1818 (2010).
  • Winter J , DiederichsS. MicroRNA biogenesis and cancer. Methods Mol. Biol.676 , 3–22 (2011).
  • Kusenda B , MrazM, MayerJ, PospisilovaS. MicroRNA biogenesis, functionality and cancer relevance. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.150(2) , 205–215 (2006).
  • Gregory RI , ShiekhattarR. MicroRNA biogenesis and cancer. Cancer Res.65(9) , 3509–3512 (2005).
  • Cortez MA , IvanC, ZhouP, WuX, IvanM, CalinGA. MicroRNAs in cancer: from bench to bedside. Adv. Cancer Res.108 , 113–157 (2010).
  • Kloosterman WP , PlasterkRH. The diverse functions of microRNAs in animal development and disease. Dev. Cell11(4) , 441–450 (2006).
  • Ambros V . The functions of animal microRNAs. Nature431(7006) , 350–355 (2004).
  • Barbarotto E , SchmittgenTD, CalinGA. MicroRNAs and cancer: profile, profile, profile. Int. J. Cancer122(5) , 969–977 (2008).
  • Zhao H , WangD, DuW, GuD, YangR. MicroRNA and leukemia: tiny molecule, great function. Crit. Rev. Oncol. Hematol.74(3) , 149–155 (2010).
  • Vasilatou D , PapageorgiouS, PappaV, PapageorgiouE, DervenoulasJ. The role of microRNAs in normal and malignant hematopoiesis. Eur. J. Haematol.84(1) , 1–16 (2010).
  • Cimmino A , CalinGA, FabbriMet al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102(39) , 13944–13949 (2005).
  • Calin GA , FerracinM, CimminoAet al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353(17) , 1793–1801 (2005).
  • Pekarsky Y , SantanamU, CimminoAet al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66(24) , 11590–11593 (2006).
  • Fulci V , ChiarettiS, GoldoniMet al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109(11) , 4944–4951 (2007).
  • Zhu DX , MiaoKR, FangCet al. Aberrant microRNA expression in Chinese patients with chronic lymphocytic leukemia. Leuk. Res. 35(6) , 730–734 (2010).
  • Ricci F , TedeschiA, MorraE, MontilloM. Fludarabine in the treatment of chronic lymphocytic leukemia: a review. Ther. Clin. Risk Manag.5(1) , 187–207 (2009).
  • Moussay E , PalissotV, VallarLet al. Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol. Cancer 9 , 115 (2010).
  • Ferracin M , ZagattiB, RizzottoLet al. MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol. Cancer 9 , 123 (2010).
  • Zenz T , MohrJ, ElderingEet al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113(16) , 3801–3808 (2009).
  • Mraz M , MalinovaK, KotaskovaJet al. miR-34a, miR-29c and miR-17–5p are downregulated in CLL patients with TP53 abnormalities. Leukemia 23(6) , 1159–1163 (2009).
  • Asslaber D , PinonJD, SeyfriedIet al. microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood 115(21) , 4191–4197 (2010).
  • Rossi S , ShimizuM, BarbarottoEet al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 116(6) , 945–952 (2010).
  • Stamatopoulos B , MeulemanN, Haibe-KainsBet al. MicroRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood 113(21) , 5237–5245 (2009).
  • Venturini L , BattmerK, CastoldiMet al. Expression of the miR-17–92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109(10) , 4399–4405 (2007).
  • Bueno MJ , Perez de Castro I, Gomez de Cedron M et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell13(6) , 496–506 (2008).
  • Flamant S , RitchieW, GuilhotJet al. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica 95(8) , 1325–1333 (2010).
  • San Jose-Eneriz E , Roman-GomezJ, Jimenez-VelascoAet al. MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol. Cancer 8 , 69 (2009).
  • Jongen-Lavrencic M , SunSM, DijkstraMK, ValkPJ, LowenbergB. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood111(10) , 5078–5085 (2008).
  • Li Z , LuJ, SunMet al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl Acad. Sci. USA 105(40) , 15535–15540 (2008).
  • Garzon R , GarofaloM, MartelliMPet al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl Acad. Sci. USA 105(10) , 3945–3950 (2008).
  • Isken F , SteffenB, MerkSet al. Identification of acute myeloid leukaemia associated microRNA expression patterns. Br. J. Haematol. 140(2) , 153–161 (2008).
  • Brioschi M , FischerJ, CairoliRet al. Down-regulation of microRNAs 222/221 in acute myelogenous leukemia with deranged core-binding factor subunits. Neoplasia 12(11) , 866–876 (2010).
  • Pulikkan JA , PeramangalamPS, DenglerVet al. C/EBPα regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 116(25) , 5638–5649 (2010).
  • Marcucci G , MaharryK, RadmacherMDet al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a cancer and leukemia group B study. J. Clin. Oncol. 26(31) , 5078–5087 (2008).
  • Marcucci G , RadmacherMD, MaharryKet al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358(18) , 1919–1928 (2008).
  • Debernardi S , SkoulakisS, MolloyG, ChaplinT, Dixon-McIverA, YoungBD. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia21(5) , 912–916 (2007).
  • Vazquez I , MaicasM, MarcoteguiNet al. Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. Proc. Natl Acad. Sci. USA 107(44) , E167–168; author reply E169–E170 (2010).
  • Mi S , LuJ, SunMet al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl Acad. Sci. USA 104(50) , 19971–19976 (2007).
  • Schotte D , ChauJC, SylvesterGet al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2) , 313–322 (2009).
  • Schotte D , De Menezes RX, Akbari Moqadam F et al. MicroRNAs characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica96(5) , 703–711 (2011).
  • Garzon R , PichiorriF, PalumboTet al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26(28) , 4148–4157 (2007).
  • Hammond SM . MicroRNA therapeutics: a new niche for antisense nucleic acids. Trends Mol. Med.12(3) , 99–101 (2006).
  • Lanford RE , Hildebrandt-EriksenES, PetriAet al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962) , 198–201 (2010).
  • Gao SM , ChenC, WuJet al. Synergistic apoptosis induction in leukemic cells by miR-15a/16–11 and arsenic trioxide. Biochem. Biophys. Res. Commun. 403(2) , 203–208 (2010).
  • Gu J , ZhuX, LiYet al. miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med. Oncol. 28(1) , 211–218 (2011).
  • Hu H , LiY, GuJet al. Antisense oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells. Leuk. Lymphoma 51(4) , 694–701 (2010).
  • Roman-Gomez J , AgirreX, Jimenez-VelascoAet al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J. Clin. Oncol. 27(8) , 1316–1322 (2009).
  • Folmer F , OrlikovaB, SchnekenburgerM, DicatoM, DiederichM. Naturally occurring regulators of histone acetylation/deacetylation. Curr. Nutr. Food Sci.6 , 78–99 (2010).
  • Link A , BalaguerF, GoelA. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem. Pharmacol.80(12) , 1771–1792 (2010).
  • vel Szic KS , NdlovuMN, HaegemanG, Vanden Berghe W. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem. Pharmacol.80(12) , 1816–1832 (2010).
  • Garcia-Manero G , DanielJ, SmithTLet al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin. Cancer Res. 8(7) , 2217–2224 (2002).
  • Taylor KH , Pena-HernandezKE, DavisJWet al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res. 67(6) , 2617–2625 (2007).
  • Issa JP , KantarjianH, MohanAet al. Methylation of the ABL1 promoter in chronic myelogenous leukemia: lack of prognostic significance. Blood 93(6) , 2075–2080 (1999).
  • Rahmatpanah FB , CarstensS, HooshmandSIet al. Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics 1(1) , 39–61 (2009).
  • Kuang SQ , TongWG, YangHet al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22(8) , 1529–1538 (2008).
  • Mulero-Navarro S , Carvajal-GonzalezJM, HerranzMet al. The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis 27(5) , 1099–1104 (2006).
  • Dunwell T , HessonL, RauchTAet al. A genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers. Mol. Cancer 9 , 44 (2010).
  • Taniguchi H , FernandezAF, SetienFet al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 69(21) , 8447–8454 (2009).
  • Murai M , ToyotaM, SatohAet al. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br. J. Cancer 92(6) , 1165–1172 (2005).
  • Scardocci A , GuidiF, D‘AloFet al. Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br. J. Cancer 95(8) , 1108–1113 (2006).
  • Ritter M , de Kant E, Huhn D, Neubauer A. Detection of DNA methylation in the calcitonin gene in human leukemias using differential polymerase chain reaction. Leukemia9(5) , 915–921 (1995).
  • Garcia-Manero G , YangH, KuangSQ, O‘BrienS, ThomasD, KantarjianH. Epigenetics of acute lymphocytic leukemia. Semin. Hematol.46(1) , 24–32 (2009).
  • Takahashi T , ShivapurkarN, ReddyJet al. DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin. Cancer Res. 10(9) , 2928–2935 (2004).
  • Matsushita C , YangY, TakeuchiSet al. Aberrant methylation in promoter-associated CpG islands of multiple genes in relapsed childhood acute lymphoblastic leukemia. Oncol Rep. 12(1) , 97–99 (2004).
  • Ekmekci CG , GutierrezMI, SirajAK, OzbekU, BhatiaK. Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am. J. Hematol.77(3) , 233–240 (2004).
  • San Jose-Eneriz E , AgirreX, Roman-GomezJet al. Downregulation of DBC1 expression in acute lymphoblastic leukaemia is mediated by aberrant methylation of its promoter. Br. J. Haematol. 134(2) , 137–144 (2006).
  • Wang YL , QianJ, LinJet al. Methylation status of DDIT3 gene in chronic myeloid leukemia. J. Exp. Clin. Cancer Res. 29 , 54 (2010).
  • Roman-Gomez J , CordeuL, AgirreXet al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 109(8) , 3462–3469 (2007).
  • Yao J , HuangQ, ZhangXB, FuWL. Promoter CpG methylation of oestrogen receptors in leukaemia. Biosci. Rep.29(4) , 211–216 (2009).
  • Uhm KO , LeeES, LeeYMet al. Differential methylation pattern of ID4, SFRP1, and SHP1 between acute myeloid leukemia and chronic myeloid leukemia. J. Korean Med. Sci. 24(3) , 493–497 (2009).
  • Hoshino K , Quintas-CardamaA, YangH, Sanchez-GonzalezB, Garcia-ManeroG. Aberrant DNA methylation of the Src kinase Hck, but not of Lyn, in Philadelphia chromosome negative acute lymphocytic leukemia. Leukemia21(5) , 906–911 (2007).
  • Pallasch CP , PatzM, ParkYJet al. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood 114(15) , 3255–3264 (2009).
  • Chim CS , WongKY, LeungCYet al. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J. Cell Mol. Med. DOI: 0.1111/j.1582-4934.2011.01274.x. (2011) (Epub ahead of print).
  • Kroeger H , JelinekJ, EstecioMRet al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood 112(4) , 1366–1373 (2008).
  • Montiel-Duarte C , CordeuL, AgirreXet al. Resistance to imatinib mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation. Leuk. Res. 32(5) , 709–716 (2008).
  • Della Peruta M , MartinelliG, MorattiEet al. Protein tyrosine phosphatase receptor type {γ} is a functional tumor suppressor gene specifically downregulated in chronic myeloid leukemia. Cancer Res. 70(21) , 8896–8906 (2010).
  • Hesson LB , DunwellTL, CooperWNet al. The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias. Mol. Cancer 8 , 42 (2009).
  • Bechter OE , EistererW, DlaskaM, KuhrT, ThalerJ. CpG island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia. Exp. Hematol.30(1) , 26–33 (2002).
  • Chantepie SP , VaurD, GrunauCet al. ZAP-70 intron1 DNA methylation status: determination by pyrosequencing in B chronic lymphocytic leukemia. Leuk. Res. 34(6) , 800–808 (2010).
  • Marton S , GarciaMR, RobelloCet al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22(2) , 330–338 (2008).
  • Akao Y , NakagawaY, KitadeY, KinoshitaT, NaoeT. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci.98(12) , 1914–1920 (2007).
  • Frenquelli M , MuzioM, ScielzoCet al. MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood 115(19) , 3949–3959 (2010).
  • Cardinaud B , MoreilhonC, MarcetBet al. miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia? Leukemia 23(11) , 2174–2177 (2009).
  • Agirre X , Jimenez-VelascoA, San Jose-Eneriz E et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol. Cancer Res.6(12) , 1830–1840 (2008).
  • Chapiro E , RussellLJ, StruskiSet al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia 24(7) , 1362–1364 (2010).
  • Bousquet M , HarrisMH, ZhouB, LodishHF. MicroRNA miR-125b causes leukemia. Proc. Natl Acad. Sci. USA107(50) , 21558–21563 (2010).
  • Tassano E , AcquilaM, TavellaE, MicalizziC, PanarelloC, MorerioC. MicroRNA-125b-1 and BLID upregulation resulting from a novel IGH translocation in childhood B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer49(8) , 682–687 (2010).
  • Zanette DL , RivadaviaF, MolfettaGAet al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz. J. Med. Biol. Res. 40(11) , 1435–1440 (2007).
  • Bhatia S , KaulD, VarmaN. Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol. Cell Biochem.340(1–2) , 97–106 (2010).
  • Careccia S , MainardiS, PelosiAet al. A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene 28(45) , 4034–4040 (2009).
  • Garzon R , VoliniaS, LiuCGet al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6) , 3183–3189 (2008).
  • Li Z , LuoRT, MiSet al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res. 69(3) , 1109–1116 (2009).
  • Mi S , LiZ, ChenPet al. Aberrant overexpression and function of the miR-17–92 cluster in MLL-rearranged acute leukemia. Proc. Natl Acad. Sci. USA 107(8) , 3710–3715 (2010).
  • Wong P , IwasakiM, SomervailleTCet al. The miR-17–92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res. 70(9) , 3833–3842 (2010).
  • Gao XN , LinJ, LiYHet al. MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene 30(31) , 3416–3428 (2011).
  • Popovic R , RiesbeckLE, VeluCSet al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113(14) , 3314–3322 (2009).
  • Ramsingh G , KoboldtDC, TrissalMet al. Complete characterization of the microRNAome in a patient with acute myeloid leukemia. Blood 116(24) , 5316–5326 (2010).
  • Liu S , WuLC, PangJet al. Sp1/NFκB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 17(4) , 333–347 (2010).
  • Paluszczak J , Krajka-KuzniakV, Baer-DubowskaW. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol. Lett.192(2) , 119–125 (2010).
  • Li Y , VandenboomTG 2nd, Kong D et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res.69(16) , 6704–6712 (2009).
  • Wang LG , LiuXM, FangYet al. De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc. Int. J. Oncol. 33(2) , 375–380 (2008).
  • Nair S , HebbarV, ShenGet al. Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm. Res. 25(2) , 387–399 (2008).
  • Myzak MC , TongP, DashwoodWM, DashwoodRH, HoE. Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp. Biol. Med. (Maywood)232(2) , 227–234 (2007).
  • Li Y , LiX, GuoB. Chemopreventive agent 3,3´-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res.70(2) , 646–654 (2010).
  • Mai A , RotiliD, TarantinoDet al. Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J. Med. Chem. 49(23) , 6897–6907 (2006).
  • Balasubramanyam K , SwaminathanV, RanganathanA, KunduTK. Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem.278(21) , 19134–19140 (2003).
  • Eliseeva ED , ValkovV, JungM, JungMO. Characterization of novel inhibitors of histone acetyltransferases. Mol. Cancer Ther.6(9) , 2391–2398 (2007).
  • Sung B , PandeyMK, AhnKSet al. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-κBα kinase, leading to potentiation of apoptosis. Blood 111(10) , 4880–4891 (2008).
  • Bora-Tatar G , Dayangac-ErdenD, DemirAS, DalkaraS, YelekciK, Erdem-YurterH. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: activity and docking studies. Bioorg. Med. Chem.17(14) , 5219–5228 (2009).
  • Waldecker M , KautenburgerT, DaumannH, BuschC, SchrenkD. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem.19(9) , 587–593 (2008).
  • Tan S , WangC, LuCet al. Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy 55(1) , 6–10 (2009).
  • Howitz KT , BittermanKJ, CohenHYet al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954) , 191–196 (2003).
  • Wood JG , RoginaB, LavuSet al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000) , 686–689 (2004).
  • Ruiz PA , BrauneA, HolzlwimmerG, Quintanilla-FendL, HallerD. Quercetin inhibits TNF-induced NF-κB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J. Nutr.137(5) , 1208–1215 (2007).
  • Lee WJ , ZhuBT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis27(2) , 269–277 (2006).
  • Arif M , PradhanSK, ThanujaGRet al. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J. Med. Chem. 52(2) , 267–277 (2009).
  • Nian H , DelageB, PintoJT, DashwoodRH. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis29(9) , 1816–1824 (2008).
  • Lea MA , RasheedM, RandolphVM, KhanF, ShareefA, DesbordesC. Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr. Cancer43(1) , 90–102 (2002).
  • Druesne N , PagniezA, MayeurCet al. Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 25(7) , 1227–1236 (2004).
  • Gracia-Sancho J , VillarrealG Jr, Zhang Y, Garcia-Cardena G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc. Res.85(3) , 514–519 (2010).
  • Kaeberlein M , McdonaghT, HeltwegBet al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280(17) , 17038–17045 (2005).
  • Yang J , KongX, Martins-SantosMEet al. Activation of SIRT1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating hepatic nuclear factor 4α. J. Biol. Chem. 284(40) , 27042–27053 (2009).
  • Boily G , HeXH, PearceB, JardineK, McburneyMW. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene28(32) , 2882–2893 (2009).
  • Tsao AS , LiuD, MartinJet al. Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev. Res. (Phila.) 2(11) , 931–941 (2009).
  • Choi KC , JungMG, LeeYHet al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 69(2) , 583–592 (2009).
  • Balasubramanian S , AdhikaryG, EckertRL. The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis31(3) , 496–503 (2010).
  • Tsang WP , KwokTT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J. Nutr. Biochem.21(2) , 140–146 (2010).
  • Fang MZ , ChenD, SunY, JinZ, ChristmanJK, YangCS. Reversal of hypermethylation and reactivation of p16INK4a, RARβ, and MGMT genes by genistein and other isoflavones from soy. Clin. Cancer Res.11(19 Pt 1) , 7033–7041 (2005).
  • Majid S , DarAA, AhmadAEet al.BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis30(4) , 662–670 (2009).
  • Tang WY , NewboldR, MardilovichKet al. Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 149(12) , 5922–5931 (2008).
  • King-Batoon A , LeszczynskaJM, KleinCB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen.49(1) , 36–45 (2008).
  • Liu Z , XieZ, JonesWet al. Curcumin is a potent DNA hypomethylation agent. Bioorg. Med. Chem. Lett. 19(3) , 706–709 (2009).
  • Chen Y , ShuW, ChenW, WuQ, LiuH, CuiG. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor κB and Notch 1 in Raji cells. Basic Clin. Pharmacol. Toxicol.101(6) , 427–433 (2007).
  • Marcu MG , JungYJ, LeeSet al. Curcumin is an inhibitor of p300 histone acetylatransferase. Med. Chem. 2(2) , 169–174 (2006).
  • Chiu J , KhanZA, FarhangkhoeeH, ChakrabartiS. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB. Nutrition25(9) , 964–972 (2009).
  • Sun M , EstrovZ, JiY, CoombesKR, HarrisDH, KurzrockR. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer. Ther.7(3) , 464–473 (2008).
  • Ali S , AhmadA, BanerjeeSet al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 70(9) , 3606–3617 (2010).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.