169
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetics of autoimmune diabetes

Pages 639-648 | Published online: 13 Oct 2011

Bibliography

  • Opie EL . The relation of diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands of Langerhans. J. Exp. Med.25(5) , 527–540 (1901).
  • Gale EA . The rise of childhood Type 1 diabetes in the 20th century. Diabetes51(12) , 3353–3361 (2002).
  • Baschal EE , EisenbarthGS. Extreme genetic risk for type 1A diabetes in the post-genome era. J. Autoimmun.31(1) , 1–6 (2008).
  • Haffner SM . Epidemiology of Type 2 diabetes risk factors. Diabetes Care21(Suppl. 3) , 3C–6C (1998).
  • Ounissi-Benkalha H , PolychronakosC. The molecular genetics of Type 1 diabetes: new genes and emerging mechanisms. Trends Mol. Med.14(6) , 268–275 (2008).
  • Barrett JC , ClaytonDG, ConcannonPet al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of Type 1 diabetes. Nat. Genet. 41(6) , 703–707 (2009).
  • Todd JA . Etiology of Type 1 diabetes. Immunity32(4) , 457–467 (2010).
  • Roep BO , PeakmanM. Surrogate end points in the design of immunotherapy trials: emerging lessons from Type 1 diabetes. Nat. Rev. Immunol.10(2) , 145–152 (2010).
  • Akerblom HK , ReunanenA. The epidemiology of insulin-dependent diabetes mellitus (IDDM) in Finland and in northern Europe. Diabetes Care8(Suppl. 1) , 10–16 (1985).
  • Hyttinen V , KaprioJ, KinnunenL, KoskenvuoM, TuomilehtoJ. Genetic liability of Type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes52(4) , 1052–1055 (2003).
  • Ling C , GroopL. Epigenetics: a molecular link between environmental factors and Type 2 diabetes. Diabetes58(12) , 2718–2725 (2009).
  • van Speybroeck L . From epigenesis to epigenetics: the case of C. H. Waddington. Ann. NY Acad. Sci.981 , 61–81 (2002).
  • Jenuwein T , AllisCD. Translating the histone code. Science293(5532) , 1074–1080 (2001).
  • Felsenfeld G , GroudineM. Controlling the double helix. Nature421(6921) , 448–453 (2003).
  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Feinberg AP . Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat. Biotechnol.28(10) , 1049–1052 (2010).
  • Patel T , PatelV, SinghR, JayaramanS. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol. Cell Biol.89(5) , 640–649 (2011).
  • Miao F , SmithDD, ZhangL, MinA, FengW, NatarajanR. Lymphocytes from patients with Type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes57(12) , 3189–3198 (2008).
  • Hasan S , HottigerMO. Histone acetyl transferases: a role in DNA repair and DNA replication. J. Mol. Med.80(8) , 463–474 (2002).
  • Brandl A , HeinzelT, KrämerOH. Histone deacetylases: salesmen and customers in the post-translational modification market. Biol. Cell.101(4) , 193–205 (2009).
  • Soutoglou E , ViolletB, VaxillaireM, YanivM, PontoglioM, TalianidisI. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J.20(8) , 1984–1992 (2001).
  • Gray SG , de Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab. Res. Rev.21(5) , 416–433 (2005).
  • Marks PA , RichonVM, BreslowR, RifkindRA. Histone deacetylase inhibitors as new cancer drugs. Curr. Opin. Oncol.13(6) , 477–483 (2001).
  • Smith KT , WorkmanJL. Histone deacetylase inhibitors: anticancer compounds. Int. J. Biochem. Cell. Biol.41(1) , 21–25 (2009).
  • Bertrand P . Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem.45(6) , 2095–2116 (2010).
  • Glozak MA , SenguptaN, ZhangX, SetoE. Acetylation and deacetylation of non-histone proteins. Gene363 , 15–23 (2005).
  • Li B , SamantaA, SongXet al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104(11) , 4571–4576 (2007).
  • Miremadi A , OestergaardMZ, PharoahPD, CaldasC. Cancer genetics of epigenetic genes. Hum. Mol. Genet.16(Spec. No 1) , R28–R49 (2007).
  • Villagra A , SotomayorEM, SetoE. Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene29(2) , 157–173 (2010).
  • Chen SS , JenkinsAJ, MajewskiH. Elevated plasma prostaglandins and acetylated histone in monocytes in Type 1 diabetes patients. Diabet. Med.26(2) , 182–186 (2009).
  • Miao F , GonzaloIG, LantingL, NatarajanR. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem.279(17) , 18091–18097 (2004).
  • Wen Y , GuJ, LiSL, ReddyMA, NatarajanR, NadlerJL. Elevated glucose and diabetes promote interleukin-12 cytokine gene expression in mouse macrophages. Endocrinology147(5) , 2518–2525 (2006).
  • Gudbjörnsdottir S , EliassonB, Eeg-OlofssonK, ZetheliusB, CederholmJ, on behalf of the National Diabetes Register (NDR). Additive effects of glycaemia and dyslipidaemia on risk of cardiovascular diseases in Type 2 diabetes: an observational study from the Swedish National Diabetes Register. Diabetologia54(10) , 2544–2551 (2011).
  • Takahashi I , MiyajiH, YoshidaT, SatoS, MizukamiT. Selective inhibition of IL-2 gene expression by trichostatin A, a potent inhibitor of mammalian histone deacetylase. J. Antibiot. (Tokyo)49(5) , 453–457 (1996).
  • van Lint C , EmilianiS, VerdinE. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr.5(4–5) , 245–253 (1996).
  • Skov S , RieneckK, BovinLFet al. Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101(4) , 1430–1438 (2003).
  • Reilly CM , ThomasM, GogalR Jr et al. The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. J. Autoimmun.31(2) , 123–130 (2008).
  • Tao R , de Zoeten EF, Ozkaynak E et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med.13(11) , 1299–1307 (2007).
  • You S , SlehofferG, BarriotS, BachJF, ChatenoudL. Unique role of CD4+CD62L+ regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc. Natl Acad. Sci. USA101(Suppl. 2) , 14580–14585 (2004).
  • Makino S , KunimotoK, MuraokaY, MizushimaY, KatagiriK, TochinoY. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu29(1) , 1–13 (1980).
  • André I , GonzalezA, WangB, KatzJ, BenoistC, MathisD. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc. Natl. Acad. Sci. USA93(6) , 2260–2263 (1996).
  • Li X , KazganN. Mammalian sirtuins and energy metabolism. Int. J. Biol. Sci.7(5) , 575–587 (2011).
  • Lugo-Villarino G , Maldonado-LopezR, PossematoR, PenarandaC, GlimcherLH. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. Proc. Natl Acad. Sci. USA100(13) , 7749–7754 (2003).
  • Matsuda JL , GeorgeTC, HagmanJ, GapinL. Temporal dissection of T-bet functions. J. Immunol.178(6) , 3457–3465 (2007).
  • Wilson CB , RowellE, SekimataM. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol.9(2) , 91–105 (2009).
  • Placek K , CoffreM, MaiellaS, BianchiE, RoggeL. Genetic and epigenetic networks controlling T helper 1 cell differentiation. Immunology127(2) , 155–162 (2009).
  • Sobel DO , HanJ, WilliamsJ, YoonJW, JunHS, AhvaziB. γ interferon paradoxically inhibits the development of diabetes in the NOD mouse. J. Autoimmun.19(3) , 129–137 (2002).
  • Qin HY , ChaturvediP, SinghB. In vivo apoptosis of diabetogenic T cells in NOD mice by IFN-γ/TNF-α. Int. Immunol.16(12) , 1723–1732 (2004).
  • Jain R , TartarDM, GreggRKet al. Innocuous IFNγ induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J. Exp. Med. 205(1) , 207–218 (2008).
  • Hu X , IvashkivLB. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity31(4) , 539–550 (2009).
  • Gysemans C , CallewaertH, OverberghL, MathieuC. Cytokine signalling in the β-cell: a dual role for IFNγ. Biochem. Soc. Trans.36(Pt 3) , 328–333 (2008).
  • Eaves IA , WickerLS, GhandourGet al. Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of Type 1 diabetes. Genome Res. 12(2) , 232–243 (2002).
  • Hui DY , HowlesPN. Carboxyl ester lipase: structure–function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res.43(12) , 2017–2030 (2002).
  • David JR , Al-AskariS, LawrenceHS, ThomasL. Delayed hypersensitivity in vitro: I. The specificity of inhibition of cell migration by antigens. J. Immunol.93 , 264–273 (1964).
  • Jayaraman S , MuthukkaruppanVR. In vitro correlate of transplantation immunity: spleen cell migration inhibition in the lizard, Calotes versicolor. Dev. Comp. Immunol.1(2) , 133–143 (1977).
  • Jayaraman S , MohanR, MuthukkaruppanVR. Relationship between migration inhibition and plaque-forming cell responses to sheep erythrocytes in the teleost, Tilapia mossambica. Dev. Comp. Immunol.3(1) , 67–75 (1979).
  • Bird A . DNA methylation patterns and epigenetic memory. Genes Dev.6(1) , 6–21 (2002).
  • Watanabe Y , MaekawaM. Methylation of DNA in cancer. Adv. Clin. Chem.52 , 145–167 (2010).
  • Mackay DJ , TempleIK. Transient neonatal diabetes mellitus Type 1. Am. J. Med. Genet. C Semin. Med. Genet.154C(3) , 335–342 (2010).
  • Bell CG , TeschendorffAE, RakyanVK, MaxwellAP, BeckS, SavageDA. Genome-wide DNA methylation analysis for diabetic nephropathy in Type 1 diabetes mellitus. BMC Med. Genomics3 , 33 (2010).
  • Penn NW , SuwalskiR, O‘RileyC, BojanowskiK, YuraR. The presence of 5- hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J.126(4) , 781–790 (1972).
  • Nestor C , RuzovA, MeehanR, DunicanD. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques48(4) , 317–319 (2010).
  • Pociot F , AkolkarB, ConcannonPet al. Genetics of Type 1 diabetes: what‘s next? Diabetes 59(7) , 1561–1571 (2010).
  • Steck AK , RewersMJ. Genetics of Type 1 diabetes. Clin. Chem.57(2) , 176–185 (2011).
  • Ridgway WM , PetersonLB, ToddJAet al. Gene–gene interactions in the NOD mouse model of Type 1 diabetes. Adv. Immunol. 100 , 151–157 (2008).
  • Karvonen M , Viik-KajanderM, MoltchanovaE, LibmanI, LaPorteR, TuomilehtoJ. Incidence of childhood Type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care23(10) , 1516–1526 (2000).
  • Bach JF . The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med.347(12) , 911–920 (2002).
  • Hober D , SauterP. Pathogenesis of Type 1 diabetes mellitus: interplay between enterovirus and host. Nat. Rev. Endocrinol.6(5) , 279–289 (2010).
  • MacFarlane A , StromA, ScottF. Epigenetics: deciphering how environmental factors may modify autoimmune Type 1 diabetes. Mamm. Genome20(9–10) , 624–632 (2009).
  • Mathers JC , StrathdeeG, ReltonCL. Induction of epigenetic alterations by dietary and other environmental factors. Adv. Genet.71 , 3–39 (2010).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell136(2) , 215–233 (2009).
  • Ambros V . MicroRNAs: genetically sensitized worms reveal new secrets. Curr. Biol.20(14) , R598–R600 (2010).
  • van Rooij E , LiuN, OlsonEN. MicroRNAs flex their muscles. Trends Genet.24(4) , 159–166 (2008).
  • Gaur A , JewellDA, LiangYet al. Characterization of miRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 67(6) , 2456–2468 (2007).
  • Zhou L , HeH, MiJX, LiC, LeeB, MiQS. MiRNA genes. Ann. NY Acad. Sci.1150 , 72–75 (2008).
  • Wright MW , BrufordEA. Naming ‘junk‘: human non-protein coding RNA (ncRNA) gene nomenclature. Hum. Genomics5(2) , 90–98 (2011).
  • Jayaraman S , PatelT, PatelVet al. Transfusion of nonobese diabetic mice with allogeneic newborn blood ameliorates autoimmune diabetes and modifies the expression of selected immune response genes. J. Immunol. 184(6) , 3008–3015 (2010).
  • Oliver SS , DenuJM. Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a “histone language”. Chembiochem12(2) , 299–307 (2011).
  • Lee JS , SmithE, ShilatifardA. The language of histone crosstalk. Cell142(5) , 682–685 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.