176
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenomics in Hematopoietic Transplantation: Novel Treatment Strategies

&
Pages 611-623 | Published online: 13 Oct 2011

Bibliography

  • Taby R , IssaJP. Cancer epigenetics. CA Cancer J. Clin.60(6) , 376–392 (2010).
  • Jenuwein T , AllisCD. Translating the histone code. Science293(5532) , 1074–1080 (2001).
  • Baylin SB , HermanJG, GraffJR, VertinoPM, IssaJP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72 , 141–196 (1998).
  • Cedar H . DNA methylation and gene activity. Cell53(1) , 3–4 (1988).
  • Cameron EE , BachmanKE, MyohanenS, HermanJG, BaylinSB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21(1) , 103–107 (1999).
  • Steele N , FinnP, BrownR, PlumbJA. Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br. J. Cancer100(5) , 758–763 (2009).
  • Zhu WG , LakshmananRR, BealMD, OttersonGA. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res.61(4) , 1327–1333 (2001).
  • Halkidou K , GaughanL, CookS, LeungHY, NealDE, RobsonCN. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate59(2) , 177–189 (2004).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell128(4) , 683–692 (2007).
  • Martinez-Garcia E , LichtJD. Deregulation of H3K27 methylation in cancer. Nat. Genet.42(2) , 100–101 (2010).
  • Fenrick R , HiebertSW. Role of histone deacetylases in acute leukemia. J. Cell Biochem. Suppl.30–31 , 194–202 (1998).
  • Seligson DB , HorvathS, ShiTet al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046) , 1262–1266 (2005).
  • Toyota M , AhujaN, Ohe-ToyotaM, HermanJG, BaylinSB, IssaJP. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA96(15) , 8681–8686 (1999).
  • Shen L , KantarjianH, GuoYet al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J. Clin. Oncol. 28(4) , 605–613 (2009).
  • Figueroa ME , SkrabanekL, LiYet al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 114(16) , 3448–3458 (2009).
  • Issa JP . Epigenetic changes in the myelodysplastic syndrome. Hematol. Oncol. Clin. North Am.24(2) , 317–330 (2010).
  • Damiani LA , YinglingCM, LengS, RomoPE, NakamuraJ, BelinskySA. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res.68(21) , 9005–9014 (2008).
  • Greco M , D‘AlòF, ScardocciAet al. Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Blood Cells Mol. Dis. 45(3) , 181–185 (2010).
  • Koturbash I , PogribnyI, KovalchukO. Stable loss of global DNA methylation in the radiation-target tissue – a possible mechanism contributing to radiation carcinogenesis? Biochem. Biophys. Res. Commun.337(2) , 526–533 (2005).
  • Scardocci A , GuidiF, D‘AlòFet al. Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br. J. Cancer 95(8) , 1108–1113 (2006).
  • Hofmann WK , TakeuchiS, TakeuchiN, ThielE, HoelzerD, KoefflerHP. Comparative analysis of hypermethylation of cell cycle control and DNA-mismatch repair genes in low-density and CD34+ bone marrow cells from patients with myelodysplastic syndrome. Leuk. Res.30(11) , 1347–1353 (2006).
  • Melki JR , VincentPC, ClarkSJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res.59(15) , 3730–3740 (1999).
  • Balkhi MY , TrivediAK, GeletuMet al. Proteomics of acute myeloid leukaemia: Cytogenetic risk groups differ specifically in their proteome, interactome and post-translational protein modifications. Oncogene 25(53) , 7041–7058 (2006).
  • Ley TJ , DingL, WalterMJet al.DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med.363(25) , 2424–2433 (2010).
  • Rohrs S , DirksWG, MeyerCet al. Hypomethylation and expression of BEX2, IGSF4 and TIMP3 indicative of MLL translocations in acute myeloid leukemia. Mol. Cancer 8 , 86 (2009).
  • Garcia-Manero G , KantarjianHM, Sanchez-GonzalezBet al. Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia. Blood 108(10) , 3271–3279 (2006).
  • Gore SD , BaylinS, SugarEet al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 66(12) , 6361–6369 (2006).
  • Soriano AO , YangH, FaderlSet al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110(7) , 2302–2308 (2007).
  • Pinto A , AttadiaV, FuscoA, FerraraF, SpadaOA, Di Fiore PP. 5-Aza-2´-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood64(4) , 922–929 (1984).
  • Pinto A , MaioM, AttadiaV, ZappacostaS, CiminoR. Modulation of HLA-DR antigens expression in human myeloid leukaemia cells by cytarabine and 5-aza-2´-deoxycytidine. Lancet2(8407) , 867–868 (1984).
  • Kaminskas E , FarrellAT, WangYC, SridharaR, PazdurR. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist10(3) , 176–182 (2005).
  • Fenaux P , MuftiGJ, Hellstrom-LindbergEet al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, Phase III study. Lancet Oncol. 10(3) , 223–232 (2009).
  • Kantarjian H , OkiY, Garcia-ManeroGet al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109(1) , 52–57 (2007).
  • Mann BS , JohnsonJR, CohenMH, JusticeR, PazdurR. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist12(10) , 1247–1252 (2007).
  • Jacobson Lo ME , Robson Mj, Gaston Eo, Zirkle Re. Effect of spleen protection on mortality following x-irradiation. J. Lab. Clin. Med.34 , 1538–1543 (1949).
  • Lorenz E , UphoffD, ReidTR, SheltonE. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J. Natl Cancer Inst.12(1) , 197–201 (1951).
  • Little MT , StorbR. History of haematopoietic stem-cell transplantation. Nat. Rev. Cancer2(3) , 231–238 (2002).
  • Kolb HJ , SchattenbergA, GoldmanJMet al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86(5) , 2041–2050 (1995).
  • Mathé G , AmielJL, SchwarzenbergL, CattanA, SchneiderM. Adoptive immunotherapy of acute leukemia. experimental and clinical results. Cancer Res.25(9) , 1525–1531 (1965).
  • Weiden PL , FlournoyN, ThomasEDet al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300(19) , 1068–1073 (1979).
  • Slavin S , NaglerA, NaparstekEet al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91(3) , 756–763 (1998).
  • Bacigalupo A , BallenK, RizzoDet al. Defining the intensity of conditioning regimens: working definitions. Biol. Blood Marrow Transplant. 15(12) , 1628–1633 (2009).
  • Gratwohl A , BaldomeroH, FrauendorferK, Urbano-IspizuaA, NiederwieserD. Results of the EBMT activity survey 2005 on haematopoietic stem cell transplantation. focus on increasing use of unrelated donors. Bone Marrow Transplant.39(2) , 71–87 (2007).
  • Gratwohl A , BaldomeroH, FrauendorferK, RochaV, ApperleyJ, NiederwieserD. The EBMT activity survey 2006 on hematopoietic stem cell transplantation: focus on the use of cord blood products. Bone Marrow Transplant.41(8) , 687–705 (2008).
  • Baldomero H , GratwohlM, GratwohlAet al. The EBMT activity survey 2009: trends over the past 5 years. Bone Marrow Transplant. 46(4) , 485–501 (2011).
  • Couban S , BarnettM. The source of cells for allografting. Biol. Blood Marrow Transplant.9(11) , 669–673 (2003).
  • Schmid C , SchleuningM, LedderoseG, TischerJ, KolbHJ. Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J. Clin. Oncol.23(24) , 5675–5687 (2005).
  • Schmid C , SchleuningM, SchwerdtfegerRet al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 108(3) , 1092–1099 (2006).
  • Collins RH Jr, Shpilberg O, Drobyski WR et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol.15(2) , 433–444 (1997).
  • Ferrara JL , LevineJE, ReddyP, HollerE. Graft-versus-host disease. Lancet373(9674) , 1550–1561 (2009).
  • Sale GE , LernerKG, BarkerEA, ShulmanHM, ThomasED. The skin biopsy in the diagnosis of acute graft-versus-host disease in man. Am. J. Pathol.89(3) , 621–636 (1977).
  • Beschorner WE , PinoJ, BoitnottJK, TutschkaPJ, SantosGW. Pathology of the liver with bone marrow transplantation. Effects of busulfan, carmustine, acute graft-versus-host disease, and cytomegalovirus infection. Am. J. Pathol.99(2) , 369–386 (1980).
  • Antin JH , FerraraJL. Cytokine dysregulation and acute graft-versus-host disease. Blood80(12) , 2964–2968 (1992).
  • Holler E . Cytokines, viruses, and graft-versus-host disease. Curr. Opin. Hematol.9(6) , 479–484 (2002).
  • Filipovich AH , WeisdorfD, PavleticSet al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol. Blood Marrow Transplant. 11(12) , 945–956 (2005).
  • Kolb HJ . Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood112(12) , 4371–4383 (2008).
  • Edinger M , HoffmannP, ErmannJet al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 9(9) , 1144–1150 (2003).
  • Cao J , ChenC, ZengL, LiL, LiZ, XuK. Engineered regulatory T cells prevent graft-versus-host disease while sparing the graft-versus-leukemia effect after bone marrow transplantation. Leuk. Res.34(10) , 1374–1382 (2010).
  • Fontenot JD , GavinMA, RudenskyAY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4(4) , 330–336 (2003).
  • Bennett CL , ChristieJ, RamsdellFet al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27(1) , 20–21 (2001).
  • Floess S , FreyerJ, SiewertCet al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5(2) , e38 (2007).
  • Tao R , de Zoeten EF, Ozkaynak E et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med.13(11) , 1299–1307 (2007).
  • Oliveira V , SawitzkiB, ChapmanSet al. Anti-CD4-mediated selection of Treg in vitro – in vitro suppression does not predict in vivo capacity to prevent graft rejection. Eur. J. Immunol. 38(6) , 1677–1688 (2008).
  • Hoffmann P , BoeldTJ, EderRet al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39(4) , 1088–1097 (2009).
  • Golovina TN , MikheevaT, BruskoTM, BlazarBR, BluestoneJA, RileyJL. Retinoic acid and rapamycin differentially affect and synergistically promote the ex vivo expansion of natural human T regulatory cells. PLoS ONE6(1) , e15868 (2011).
  • Ma H , LuC, ZieglerJet al. Absence of Stat1 in donor CD4+ T cells promotes the expansion of Tregs and reduces graft-versus-host disease in mice. J. Clin. Invest. 121(7) , 2554–2569 (2011).
  • Marek N , BieniaszewskaM, KrzystyniakAet al. The time is crucial for ex vivo expansion of T regulatory cells for therapy. Cell Transplant. DOI: 10.3727/096368911X566217 (2011) (Epub ahead of print).
  • Colonna M , BrooksEG, FalcoM, FerraraGB, StromingerJL. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science260(5111) , 1121–1124 (1993).
  • Ciccone E , PendeD, VialeOet al. Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition. definition of five distinct NK-determined allospecificities in humans. J. Exp. Med. 175(3) , 709–718 (1992).
  • Kiessling R , KleinE, WigzellH. ‘Natural‘ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol.5(2) , 112–117 (1975).
  • Pegram HJ , RitchieDS, SmythMJet al. Alloreactive natural killer cells in hematopoietic stem cell transplantation. Leuk. Res. 35(1) , 14–21 (2011).
  • Pende D , SpaggiariGM, MarcenaroSet al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias. evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105(5) , 2066–2073 (2005).
  • Ruggeri L , CapanniM, UrbaniEet al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562) , 2097–2100 (2002).
  • Potter VT , TindellVJ, Jeyaraj-NallathambiLet al. Retrospective analysis of 5-azacitidine as induction therapy prior to haematopoietic stem cell transplantation. Presented at: 37th Annual Meeting of the European Group for Blood and Marrow Transplantation. Paris, France, 3–6 April 2011 (Abstract P1172).
  • de Padua Silva L , de Lima M, Kantarjian H et al. Outcome of allogeneic stem cell transplantation after hypomethylating therapy with 2´-deoxy-5 azacytidine for patients with myelodysplastic syndrome. Presented at: American Society of Hematology (ASH) 49th Annual Meeting and Exposition. Atlanta, Georgia, USA, 8–11 December 2007 (Abstract 1468).
  • de Lima M , RavandiF, ShahjahanMet al. Long-term follow-up of a phase I study of high-dose decitabine, busulfan, and cyclophosphamide plus allogeneic transplantation for the treatment of patients with leukemias. Cancer 97(5) , 1242–1247 (2003).
  • Giralt S , DavisM, O‘BrienSet al. Studies of decitabine with allogeneic progenitor cell transplantation. Leukemia 11(Suppl. 1) , S32–S34 (1997).
  • McCarty J , ShickleL, RobertsC, CandlerK, ChungH. 5-Azacytidine prior to allogeneic transplantation effectively reduces relapse, TRM and overall mortality in high risk myelodysplasia and secondary AML. Presented at: 34th Annual Meeting of the European Group for Blood and Marrow Transplantation. Florence, Italy, 30 March–2 April 2008 (Abstract P746).
  • Lübbert M , BertzH, RuterBH, MertelsmannRH, FinkeJ. Non-Intensive AML/MDS treatment with low-dose decitabine prior to reduced-intensity conditioning (RIC) and allogeneic blood stem cell transplantation of older patients. Presented at: American Society of Hematology (ASH) 48th Annual Meeting and Exposition. Orlando, Florida, USA, 9–12 December 2006 (Abstract 5257).
  • Wang X , ZhangW, TripodiJet al. Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells. Blood 116(26) , 5972–5982 (2010).
  • Morozova E , RudnitskayaY, TretyakovaM, MamaevN, GindivaT, AfanasyevB. Hypomethylating therapy with decitabine prior to allogeneic BMT for MDS/AML patients. Presented at: 37th Annual Meeting of the European Group for Blood and Marrow Transplantation. Paris, France, 3–6 April 2011 (Abstract P1173).
  • Czibere A , GraefT, LindJet al. 5-azacitidine in combination with donor lymphocyte infusions for the treatment of patients with MDS or AML relapsing after allogeneic stem cell transplantation. Presented at: American Society of Hematology (ASH) 48th Annual Meeting and Exposition. Orlando, Florida, USA, 9–12 December 2006 (Abstract 5341).
  • Jabbour E , GiraltS, KantarjianHet al. Low-dose azacitidine after allogeneic stem cell transplantation for acute leukemia. Cancer 115(9) , 1899–1905 (2009).
  • Platzbecker U , WermkeM, RadkeJet al. Efficiancy of 5-azacytidine in treating imminent relapse of patients with high-risk MDS or AML and minimal residual disease after allogeneic stem cell transplantation: results of the RELAZA trial. Presented at: 37th Annual Meeting of the European Group for Blood and Marrow Transplantation. Paris, France, 3–6 April 2011 (Abstract 0415).
  • Ravandi F , KantarjianH, CohenAet al. Decitabine with allogeneic peripheral blood stem cell transplantation in the therapy of leukemia relapse following a prior transplant: results of a Phase I study. Bone Marrow Transplant. 27(12) , 1221–1225 (2001).
  • Schroeder T , CzibereA, KrögerNet al. Azacytidine and donor lymphocyte infusions as first salvage treatment in patients with acute myeloid leukaemia or myelodysplastic syndromes relapsing after allogeneic stem cell transplantation: interim-analysis from the AZARELA-trial (NCT-00795548). Presented at: 37th Annual Meeting of the European Group for Blood and Marrow Transplantation. Paris, France, 3–6 April 2011 (Abstract 0414).
  • Leoni F , ZalianiA, BertoliniGet al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl Acad. Sci. USA 99(5) , 2995–3000 (2002).
  • Reddy P , MaedaY, HotaryKet al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl Acad. Sci. USA 101(11) , 3921–3926 (2004).
  • Choi J , RitcheyJ, PriorJLet al.In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood116(1) , 129–139 (2010).
  • Sanchez-Abarca LI , Gutierrez-CosioS, SantamariaCet al. Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood 115(1) , 107–121 (2010).
  • de Lima M , GiraltS, ThallPFet al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer 116(23) , 5420–5431 (2010).
  • Storb R . Can reduced-intensity allogeneic transplantation cure older adults with AML? Best Pract. Res. Clin. Haematol.20(1) , 85–90 (2007).
  • Insinga A , MonestiroliS, RonzoniSet al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med. 11(1) , 71–76 (2005).
  • Magner WJ , KazimAL, StewartCet al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J. Immunol. 165(12) , 7017–7024 (2000).
  • Nebbioso A , ClarkeN, VoltzEet al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med. 11(1) , 77–84 (2005).
  • Lübbert M , BertzH, WaschRet al. Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant. 45(4) , 627–632 (2010).
  • Reddy P , ZouW. Blocking HDACs boosts regulatory T cells. Nat. Med.13(11) , 1282–1284 (2007).
  • Santourlidis S , TrompeterHI, WeinholdSet al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J. Immunol. 169(8) , 4253–4261 (2002).
  • Chan HW , KuragoZB, StewartCAet al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J. Exp. Med. 197(2) , 245–255 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.