174
Views
0
CrossRef citations to date
0
Altmetric
Review

Histone Methylation in Myelodysplastic Syndromes

, , , &
Pages 193-205 | Published online: 20 Apr 2011

Bibliography

  • Nimer SD : Myelodysplastic syndromes.Blood111 , 4841–4851 (2008).
  • Rollison DE , HowladerN, SmithMTet al.: Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs.Blood112 , 45–52 (2008).
  • Godley LA , LarsonRA: Therapy-related myeloid leukemia.Semin. Oncol.35 , 418–429 (2008).
  • Tefferi A , ThieleJ, VardimanW: Response: The 2008 World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: a paradigm of effective collaboration among clinicians, pathologists, and scientists.Blood111 , 1742 (2008).
  • Greenberg P , CoxC, LeBeauMMet al.: International scoring system for evaluating prognosis in myelodysplastic syndromes.Blood89 , 2079–2088 (1997).
  • Garcia-Manero G , ShanJ, FaderlSet al.: A prognostic score for patients with lower risk myelodysplastic syndrome.Leukemia22 , 538–543 (2008).
  • Dayyani F , ConleyAP, StromSSet al.: Cause of death of patients with lower risk myelodysplastic syndrome.Cancer116 , 2174–2179 (2010).
  • Haase D , GermingU, SchanzJet al.: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients.Blood110 , 4385–4395 (2007).
  • Bejar R , LevineR, EbertBL: Unraveling the molecular pathophysiology of myelodysplastic syndromes.J. Clin. Oncol.29 , 504–515 (2011).
  • Issa JP : Epigenetic changes in the myelodysplastic syndromes.Hematol. Oncol. Clin. North Am.24 , 317–330 (2010).
  • Riddihough G , ZahnLM: Epigenetics. What is epigenetics? Introduction.Science330 , 611 (2010).
  • Swami M : Epigenetics: Demethylation links cell fate and cancer.Nat. Rev. Cancer10 , 740 (2010).
  • Kaiser J : Genes link epigenetics and cancer.Science330 , 577 (2010).
  • Garcia-Manero G : Progress in myelodysplastic syndromes.Clin. Lymphoma Myeloma9 , S286–S292 (2009).
  • Kuendgen A , LübbertM: Current status of epigenetic treatment in myelodysplastic syndromes.Ann. Hematol.87 , 601–611 (2008).
  • Figueroa ME , SkrabanekL, LiY, et al.: MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood114 , 3448–3458 (2009).
  • Länger F , DingemannJ, KreipeH, LehmannU: Up-regulation of DNA methyltransferases DNMT1, 3A, and 3B in myelodysplastic syndrome.Leuk. Res.29 , 325–329 (2005).
  • Smith AE , MohamedaliAM, KulasekararajAet al: Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood116 , 3923–3932 (2010).
  • Ko M , HuangY, JankowskaAMet al.: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2.Nature468(7325) , 839–843 (2010).
  • Fenaux P , MuftiGJ, Hellstrom-LindbergEet al.: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-label, Phase III study.Lancet Oncol.10 , 223–232 (2009).
  • Garcia-Manero G , YangH, Bueso-RamosCet al.: Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes.Blood111 , 1060–1066 (2008).
  • Garcia-Manero G , AssoulineS, CortesJet al.: Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia.Blood112 , 981–989 (2008).
  • Klimek VM , FircanisS, MaslakPet al.: Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes.Clin. Cancer Res.14 , 826–832 (2008).
  • Giles F , FischerT, CortesJet al.: A Phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies.Clin. Cancer Res.12 , 4628–4635 (2006).
  • Klose RJ , ZhangY: Regulation of histone methylation by demethylimination and demethylation.Nat. Rev. Mol. Cell Biol.8 , 307–318 (2007).
  • Kouzarides T : Chromatin Modifications and their function.Cell128 , 693–705 (2007).
  • Lan F , NottkeAC, ShiY: Mechanisms involved in the regulation of histone lysine demethylases.Curr. Opin. Cell Biol.20 , 316–325 (2008).
  • Bedford MT : Arginine methylation at a glance.J. Cell Sci.120 , 4243–4246 (2007).
  • Martin C , ZhangY: The diverse functions of histone lysine methylation.Nat. Rev. Mol. Cell Biol.6 , 838–849. (2005).
  • Albert M , HelinK: Histone methyltransferases in cancer.Sem. Cell Develop. Biol.21 , 209–220 (2010).
  • Flanagan JF , MiLZ, ChruszczM: Double chromodomains cooperate to recognize the methylated histone H3 tail.Nature438 , 1090–1091 (2005).
  • Spektor TM , RiceJC: Identification and characterization of posttranslational modification-specific binding proteins in vivo by mammalian tethered catalysis.Proc. Natl Acad. Sci. USA106 , 14808–14813 (2009).
  • Li H , FischleW, WangWet al.: Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger.Mol. Cell28 , 677–691 (2007).
  • Shi X , HongT, WalterKLet al.: ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression.Nature442 , 96–99 (2006).
  • Barski A , CuddapahS, CuiKet al.: High-resolution profiling of histone methylations in the human genome.Cell129 , 823–837 (2007).
  • Shi Y , LanF, MatsonCet al.: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.Cell119 , 941–953 (2004).
  • Tsukada Y , FangJ, Erdjument-BromageHet al.: Histone demethylation by a family of JmjC domain-containing proteins.Nature439 , 811–816 (2006).
  • Krivtsov AV , ArmstrongSA: MLL translocations, histone modifications and leukaemia stem-cell development.Nat. Rev. Cancer7 , 823–833 (2007).
  • Okada Y , FengQ, LinYet al.: hDOT1L links histone methylation to leukemogenesis.Cell121 , 167–178 (2005).
  • Nikoloski G , LangemeijerSM, KuiperRPet al.: Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes.Nat. Genet.42 , 665–667 (2010).
  • Jankowska A , MakishimaH, TiuRV et al.: Mutational spectrum in chronic myelomonocytic leukemia includes genes associated with epigenetic regulation such as UTX and EZH2. Presented at: 52nd American Society of Hematology Annual Meeting and Exposition. Orlando, FL, USA, 4–7 December 2010.
  • Szpurka H , Jankowska,AM, PrzychodzenBet al.: UTX mutations and epigenetic changes in MDS/MPN and related myeloid malignancies. Presented at: 52nd American Society of Hematology Annual Meeting and Exposition. Orlando, FL, USA, 4–7 December 2010.
  • Wei Y , ChenR, Bueso-RamosCet al.: Genome-wide CHIP-Seq analysis of histone methylation reveals modulators of NF-κB signaling and the histone demethylase JMJD3 as implicated in disease progression in myelodysplastic syndrome (MDS). Presented at: 51st American Society of Hematology Annual Meeting and Exposition. New Orleans, LA, USA, 4–7 December 2009.
  • Milne TA , BriggsSD, BrockHWet al.: MLL targets SET domain methyltransferase activity to Hox gene promoters.Mol. Cell10 , 1107–1117 (2002).
  • Malik S and Bhaumik SR: Mixed lineage leukemia: histone H3 Lysine 4 methyltrasferases from yeast to human. FEBS J.277 , 1805–1821 (2010).
  • Dicker F , HaferlachC, SundermannJet al.: Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML.Leukemia24 , 1528–1532. (2010).
  • Wang SA , JabbarK, LuGet al.: Trisomy 11 in myelodysplastic syndromes defines a unique group of disease with aggressive clinicopathologic features.Leukemia24 , 740–747 (2010).
  • Krivtsov AV and Armstrong SA: MLL translocations, histone modifications and leukeamia stem cell development. Nat. Rev. Cancer7 , 823–833 (2007).
  • Heinrichs S , BermanJN, OrtizTMet al.: CD34+ cell selection is required to assess HOXA9 expression levels in patients with myelodysplastic syndrome.Br. J. Haematol.130 , 83–86 (2005).
  • Lee MG , WynderC, CoochN, ShiekhattarR: An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation.Nature437 , 432–435 (2005).
  • Saleque S , KimJ, RookeHM, OrkinSH: Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1.Mol. Cell27 , 562–572 (2007).
  • Hu X , LiX, ValverdeK, FuX, NoguchiC, QiuY, HuangS: LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis.Proc. Natl Acad. Sci. USA106 , 10141–10146 (2009).
  • Huh HJ , ChaeSL, LeeM, HongKS, MunYC, SeongCMet al.: PU.1 and GFI1 mRNA expression in myelodysplastic syndrome.Int. J. Lab. Hematol.31 , 344–351 (2009).
  • Rujkijyanont P , BeyeneJ, WeiK, KhanF, DrorY: Leukaemia-related gene expression in bone marrow cells from patients with the preleukaemic disorder Shwachman–Diamond syndrome.Br. J. Haematol.137 , 537–544 (2007).
  • Lee SW , ChoYS, NaJMet al.: ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1.J. Biol. Chem.285 , 18–29 (2010)
  • Gelsi-Boyer V , TrouplinV, RoquainJet al.: ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia.Br. J. Haematol.151 , 365–375 (2010).
  • Gelsi-Boyer V , TrouplinV, AdélaïdeJet al.: Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia.Br. J. Haematol.145 , 788–800 (2009).
  • Boultwood J , PerryJ, PellagattiAet al.: Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia.Leukemia24 , 1062–1065 (2010).
  • La Starza R , GorelloP, RosatiRet al.: Cryptic insertion producing two NUP98/NSD1 chimeric transcripts in adult refractory anemia with an excess of blasts.Genes Chromosomes Cancer41 , 395–399 (2004).
  • Taketani T , TakiT, NakamuraH, TaniwakiM, MasudaJ, HayashiY: NUP98-NSD3 fusion gene in radiation-associated myelodysplastic syndrome with t(8;11)(p11;p15) and expression pattern of NSD family genes.Cancer Genet. Cytogenet.190 , 108–112 (2009).
  • Wang GG , CaiL, PasillasMP, KampsMP: NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis.Nat. Cell Biol.9 , 804–812 (2007).
  • He J , KallinEM, TsukadaY, ZhangY: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b).Nat. Struct. Mol. Biol.15 , 1169–1175 (2008).
  • Gearhart MD , CorcoranCM, WamstadJA, BardwellVJ: Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets.Mol. Cell Biol.26 , 6880–6889 (2006).
  • Martínez-Ramírez A , UriosteM, MelchorLet al.: Analysis of myelodysplastic syndromes with complex karyotypes by high-resolution comparative genomic hybridization and subtelomeric CGH array.Genes Chromosomes Cancer42 , 287–298 (2005).
  • Vakoc CR , SachdevaMM, WangH, BlobelGA: Profile of histone lysine methylation across transcribed mammalian chromatin.Mol. Cell Biol.26 , 9185–9195 (2006).
  • Feng Q , WangH, NgHHet al.: Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain.Curr. Biol.12 , 1052–1058 (2002).
  • Janzen CJ , HakeSB, LowellJE, CrossGA: Selective di- or trimethylation of histone H3 lysine 79 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei.Mol. Cell23 , 497–507 (2006).
  • Krivtsov AV , FengZ, LemieuxMEet al.: H3K79 methylation profiles define murine and human MLL-AF4 leukemias.Cancer Cell14 , 355–368 (2008).
  • Barry ER , CorryGN, RasmussenTP: Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development.Expert Opin. Ther. Targets14 , 405–418 (2010).
  • Zhu YL , ZhangY, ZhuP, YangY, DuJW, LiuJ: Role of molecular screening for common fusion genes in the diagnosis and classification of leukemia.Beijing Da Xue Xue Bao.37 , 236–239 (2005).
  • Feng Y , YangY, OrtegaMMet al.: Early mammalian erythropoiesis requires the Dot1L methyltransferase.Blood116 , 4483–4491 (2010).
  • Chou ST , KhandrosE, BaileyLCet al.: Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate.Blood114 , 983–994 (2009).
  • Lahortiga I , VázquezI, AgirreXet al.: Molecular heterogeneity in AML/MDS patients with 3q21q26 rearrangements.Genes Chromosomes Cancer40 , 179–189 (2004).
  • Laricchia-Robbio L , PremanandK, RinaldiCR, NuciforaG: EVI1 Impairs myelopoiesis by deregulation of PU.1 function.Cancer Res.69 , 1633–1642 (2009).
  • Nishikata I , SasakiH, IgaMet al.: A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is G-CSF–induced myeloid differentiation expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation.Blood102 , 3323–3332 (2003).
  • Azuara V , PerryP, SauerSet al.: Chromatin signatures of pluripotent cell lines.Nat. Cell Biol.8 , 532–538 (2006).
  • J⊘rgensen HF , GiadrossiS, CasanovaM: Stem cells primed for action: polycomb repressive complexes restrain the expression of lineage-specific regulators in embryonic stem cells cell cycle.Cell Cycle5 , 1411–1414 (2006).
  • Mazzarella L , J⊘rgensenHF, Soza-RiedJet al.: Embryonic stem cell–derived hemangioblasts remain epigenetically plastic and require PRC1 to prevent neural gene expression.Blood117 , 83–87 (2011).
  • Paul TA , BiesJ, SmallD, WolffL: Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML.Blood115 , 3098–3108 (2010).
  • Uchida T , KinoshitaT, NagaiHet al.: Hypermethylation of the p15INK4B gene in myelodysplastic syndromes.Blood90 , 1403–1409 (1997).
  • Quesnel B , FenauxP: P15INK4b gene methylation and myelodysplastic syndromes.Leuk. Lymphoma35 , 437–443 (1999).
  • Look AT : Molecular pathogenesis of MDS.Hematology Am. Soc. Hematol. Educ. Program.156–160 (2005).
  • Liu TX , BeckerMW, JelinekJet al.: Chromosome 5q deletion and epigenetic suppression of the gene encoding α-catenin (CTNNA1) in myeloid cell transformation. 13 , 78–83 (2007)
  • Ye Y , McDevittMA, GuoMet al.: Progressive chromatin repression and promoter methylation of CTNNA1 associated with advanced myeloid malignancies.Cancer Res.69 , 8482–8490 (2009).
  • Czermin B , MelfiR, McCabeD, SeitzV, ImhofA, PirrottaV: Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites.Cell11 , 185–196 (2002).
  • Haase D , GermingU, SchanzJet al.: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients.Blood110 , 4385–4395 (2007).
  • Xu F , LiX, WuL, ZhangQet al.: Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring.Ann. Hematol. (2010) (Epub ahead of print).
  • Chang CJ , YangJY, XiaWet al.: EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling.Cancer Cell19 , 86–100 (2011).
  • Smith ER , LeeMG, WinterBet al.: Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II.Mol. Cell Biol.28 , 1041–1046 (2008).
  • Agger K , CloosPA, ChristensenJet al.: UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development.Nature449 , 731–734 (2007).
  • Agherbi H , Gaussmann-WengerA, VerthuyC, Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS One4 , e5622 (2009).
  • Wang YY , CenJN, HeJet al.: Accelerated cellular senescence in myelodysplastic syndrome.Exp. Hematol.37 , 1310–1317 (2009).
  • Rodrigues EF , Santos-RebouçasCB, Gonçalves Pimentel MM et al.: Epigenetic alterations of p15(INK4B) and p16(INK4A) genes in pediatric primary myelodysplastic syndrome. Leuk. Lymphoma51 , 1887–1894 (2010).
  • Tachibana M , MatsumuraY, FukudaM, KimuraH, ShinkaiY: G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription.EMBO J.27 , 2681–2690 (2008).
  • Voutsadakis IA , MaillardN: Acute myelogenous leukemia with the t(3;12)(q26;p13) translocation: case report and review of the literature.Am. J. Hematol.72 , 135–137 (2003).
  • Wieser R : The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions.Gene396 , 346–357 (2007).
  • Spensberger D , DelwelR: A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a.FEBS Lett.582 , 2761–2767 (2008).
  • Lakshmikuttyamma A , ScottSA, DeCoteauJF, GeyerCR: Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition.Oncogene29 , 576–588 (2010)2.
  • Aggerholm A , HolmMS, GuldbergP, OlesenLH, HoklandP: Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients.Eur. J. Haematol.76 , 23–32 (2006).
  • Grövdal M , KhanR, AggerholmAet al.: Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome.Clin. Cancer Res.13 , 7107–7112 (2007).
  • Botuyan MV , LeeJ, WardIMet al.: Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair.Cell127 , 1361–1373 (2006).
  • Schotta G , LachnerM, SarmaKet al.: A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin.Genes Dev.18 , 1251–1262 (2004).
  • Fang J , FengQ, KetelCSet al.: Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase.Curr. Biol.12 , 1086–1099 (2002).
  • Liu W , TanasaB, TyurinaOVet al.: PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression.Nature466 , 508–512 (2010).
  • Feng W , YonezawaM, YeJ, JenuweinT, GrummtI: PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation.Nat. Struct. Mol. Biol.17 , 445–450 (2010).
  • Wu MY , TsaiTF, BeaudetAL: Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain.Genes Dev.20 , 2859–2870 (2006).
  • Pal S , SifS: Interplay between chromatin remodelers and protein arginine methyltransferases.J. Cell Physiol.213 , 306–315 (2007).
  • Cheung N , ChanLC, ThompsonA, ClearyML, SoCW: Protein arginine-methyltransferase-dependent oncogenesis.Nat. Cell Biol.9 , 1208–1215 (2007).
  • Guccione E , BassiC, CasadioFet al.: Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive.Nature449 , 933–937 (2007).
  • Hyllus D , SteinC, SchnabelKet al.: PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation.Genes Dev.21 , 3369–3380 (2007).
  • Zhao X , JankovicV, GuralAet al.: Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity.Genes Dev.22 , 640–653 (2008).
  • Chang B , ChenY, ZhaoY, BruickRK: JMJD6 is a histone arginine demethylase.Science318 , 444–47 (2007).
  • Loenen WA : S-adenosylmethionine: jack of all trades and master of everything?.Biochem. Soc. Trans.34 , 330–333 (2006).
  • Tan J , YangX, ZhuangLet al.: Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells.Genes Dev.21 , 1050–1063 (2007).
  • Fiskus W , WangY, SreekumarAet al.: Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells.Blood114 , 2733–2743 (2009).
  • Kleer CG , CaoQ, VaramballySet al.: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells.Proc. Natl Acad. Sci. USA100 , 11606–11611 (2003).
  • Lakshmikuttyamma A , ScottSA, DeCoteauJF, GeyerCR: Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition.Oncogene29 , 576–588 (2010).
  • Kubicek S , O‘SullivanRJ, AugustEMet al.: Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase.Mol. Cell25 , 473–481 (2007).
  • Castellano S , MiliteC, RagnoRet al.: Design, synthesis and biological evaluation of carboxy analogues of arginine methyltransferase inhibitor 1 (AMI-1).Chem. Med. Chem.5 , 398–414 (2010).
  • Spannhoff A , MachmurR, HeinkeRet al.: A novel arginine methyltransferase inhibitor with cellular activity.Bioorg. Med. Chem. Lett.17 , 4150–4153 (2007).
  • Coward WR , WattsK, Feghali-BostwickCA, JenkinsG, PangL: Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis.Mol. Cell Biol.30 , 2874–2886 (2010).
  • Spannhoff A , HauserAT, HeinkeR, SipplW, JungM: The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors.Chem. Med. Chem.4 , 1568–1582 (2009).
  • Binda C , ValenteS, RomanenghiMet al.: Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2.J. Am. Chem. Soc.132 , 6827–6833 (2010).
  • Mackeen MM , KramerHB, ChangKHet al.: Small-molecule-based inhibition of histone demethylation in cells assessed by quantitative mass spectrometry.J. Proteome Res.9 , 4082–4092 (2010).
  • Hamada S , SuzukiT, MinoKet al.: Design, synthesis, enzyme-inhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors.J. Med. Chem.53 , 5629–5638 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.