299
Views
0
CrossRef citations to date
0
Altmetric
Review

miRNA Therapeutics: Delivery and Biological Activity of Peptide Nucleic Acids Targeting miRNAs

, , , , , , , , , , & show all
Pages 733-745 | Published online: 25 Nov 2011

References

  • Nielsen PE , EgholmM, BergRH, BuchardtO. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science254 , 1497–1500 (1991).
  • Demidov VV , Frank-KamenetskiiMD. Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion. Methods23 , 108–122 (2001).
  • Gambari R . Peptide-nucleic acids (PNAs). A tool for the development of gene expression modifiers. Curr. Pharm. Des.7 , 1839–1862 (2001).
  • Paulasova P , PellestorF. The peptide nucleic acids (PNAs). A new generation of probes for genetic and cytogenetic analyses. Ann. Genet.47 , 349–358 (2004).
  • Nielsen PE . Targeting double stranded DNA with peptide nucleic acid (PNA). Curr. Med. Chem.8 , 545–550 (2001).
  • Good L , NielsenPE. Progress in developing PNA as a gene-targeted drug. Antisense Nucleic Acid Drug Dev.7 , 431–437 (1997).
  • Marin VL , RoyS, ArmitageBA. Recent advances in the development of peptide nucleic acid as a gene-targeted drug. Expert Opin. Biol. Ther.4 , 337–348 (2004).
  • Nielsen PE . Antisense peptide nucleic acids. Curr. Opin. Mol. Ther.2 , 282–287 (2002).
  • Soomets U , HällbrinkM, LangelU. Antisense properties of peptide nucleic acids. Front. Biosci.4 , D782–D786 (1999).
  • Ray A , NordénB. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J.14 , 1041–1060 (2000).
  • Fabani MM , GaitMJ. miR-122 targeting with LNA/2´-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA14 , 336–346 (2008).
  • Fabani MM , Abreu-GoodgerC, WilliamsD et al. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 38 , 4466–4475 (2010).
  • Ivanova GD , FabaniMM, ArzumanovAA et al. PNA-peptide conjugates as intracellular gene control agents. Nucleic Acids Symp. Ser. (Oxford) 52 , 31–32 (2008).
  • Torres AG , FabaniMM, VigoritoE, GaitMJ. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved northern-blot-based method for miRNA detection. RNA17(5) , 933–943 (2011).
  • Oh SY , JuY, KimS, ParkH. PNA-based antisense oligonucleotides for microRNAs inhibition in the absence of a transfection reagent. Oligonucleotides20(5) , 225–230 (2010).
  • Oh SY , JuY, ParkH. A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Mol. Cells28(4) , 341–345 (2009).
  • Marchelli R , CorradiniR, ManicardiA et al. Gene modulation by peptide nucleic acids (PNAs) targeting microRNAs (miRs). In: Targets in Gene Therapy. You Y (Ed.). InTech (2011).
  • Costa FF . Epigenomics in cancer management. Cancer Manag. Res.2 , 255–265 (2010).
  • Filipowicz W , JaskiewiczL, KolbFA, PillaiRS. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struc. Biol.15 , 331–341 (2005).
  • He L , Hannon,GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5 , 522–531 (2010).
  • Kozomara A , Griffiths-JonesS. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res.39 , D152–D157 (2010).
  • Krol J , LoedigeI, FilipowiczW. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet.11 , 597–610 (2010).
  • Calabretta A , TedeschiT, CorradiniR, MarchelliR, Sforza,S. DNA and RNA binding properties of an arginine-based ‘extended chiral box‘ peptide nucleic acid. Tetrahedron Lett.52 , 300–304 (2011).
  • Borgatti M , RomanelliA, SavianoM et al. Resistance of decoy PNA–DNA chimeras to enzymatic degradation in cellular extracts and serum. Oncol. Res. 13(5) , 279–287 (2003).
  • Borgatti M , BredaL, CortesiR et al. Cationic liposomes as delivery systems for double-stranded PNA-DNA chimeras exhibiting decoy activity against NF-κB transcription factors. Biochem. Pharmacol. 64 , 609–616 (2002).
  • Demidov VV , PotamanVN, Frank-KamenetskiiMD et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48(6) , 1310–1313 (1994).
  • Eriksson M , NielsenPE. PNA-nucleic acid complexes. Structure, stability and dynamics. Q. Rev. Biophys.29(4) , 369–394 (1996).
  • Shiraishi T , HamzaviR, NielsenPE. Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells. Nucleic Acids Res.36(13) , 4424–4432 (2008).
  • Gambari R , BorgattiM, BezzerriV et al. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor κB: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem. Pharmacol. 80(12) , 1887–1894 (2010).
  • Stein CA . Two problems in antisense biotechnology: in vitro delivery and the design of antisense experiments. Biochim. Biophys. Acta1489 , 45–52 (1999).
  • Hatamoto M , OhashiA, ImachiH. Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology. Appl. Microbiol. Biotechnol.86(2) , 397–402 (2010).
  • Pandey VN , UpadhyayA, ChaubeyB. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin. Biol. Ther.9(8) , 975–989 (2009).
  • Turner JJ , JonesS, FabaniMM, IvanovaG, ArzumanovAA, GaitMJ. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis.38(1) , 1–7 (2007).
  • Lundin KE , GoodL, StrömbergR, GräslundA, SmithCI. Biological activity and biotechnological aspects of peptide nucleic acid. Adv. Genet.56 , 1–51 (2006).
  • Yin H , BettsC, SalehAF et al. Optimization of peptide nucleic acid antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse. Mol. Ther. 18(4) , 819–827 (2010).
  • Shiraishi T , EysturskarthJ, NielsenPE. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions. BMC Cancer10 , 342 (2010).
  • Tonelli R , PurgatoS, CamerinC et al. Anti-gene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Mol. Cancer Ther. 4(5) , 779–786 (2005).
  • M⊘llegaard NE , BuchardtO, EgholmM, NielsenPE. Peptide nucleic acid.DNA strand displacement loops as artificial transcription promoters. Proc. Natl Acad. Sci. USA91(9) , 3892–3895 (1994).
  • Mischiati C , BorgattiM, BianchiN et al. Interaction of the human NF-κB p52 transcription factor with DNA–PNA hybrids mimicking the NF-κB binding sites of the human immunodeficiency virus type 1 promoter. J. Biol. Chem. 274(46) , 33114–33122 (1999).
  • Saviano M , RomanelliA, BucciE et al. Computational procedures to explain the different biological activity of DNA/DNA, DNA/PNA and PNA/PNA hybrid molecules mimicking NF-κB binding sites. J. Biomol. Struct. Dyn. 18(3) , 353–362 (2000).
  • Borgatti M , LamprontiI, RomanelliA et al. Transcription factor decoy molecules based on a peptide nucleic acid (PNA)–DNA chimera mimicking Sp1 binding sites. J. Biol. Chem. 278(9) , 7500–7509 (2003).
  • Piva R , GambariR. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol. Cancer Res. Treat.1(5) , 405–416 (2002).
  • Penolazzi L , BorgattiM, LambertiniE et al. Peptide nucleic acid-DNA decoy chimeras targeting NF-κB transcription factors: induction of apoptosis in human primary osteoclasts. Int. J. Mol. Med. 14(2) , 145–152 (2004).
  • Gambari R . Biological activity and delivery of peptide nucleic acids (PNA)–DNA chimeras for transcription factor decoy (TFD) pharmacotherapy. Curr. Med. Chem.11(10) , 1253–1263 (2004).
  • Borgatti M , FinottiA, RomanelliA et al. Peptide nucleic acids (PNA)–DNA chimeras targeting transcription factors as a tool to modify gene expression. Curr. Drug. Targets 5(8) , 735–744 (2004).
  • Borgatti M , BoydDD, LamprontiI et al. Decoy molecules based on PNA–DNA chimeras and targeting Sp1 transcription factors inhibit the activity of urokinase-type plasminogen activator receptor (uPAR) promoter. Oncol. Res. 15(7–8) , 373–383 (2005).
  • Romanelli A , PedoneC, SavianoM, BianchiN, BorgattiM, MischiatiC et al. Molecular interactions with nuclear factor κB (NF-κB) transcription factors of a PNA-DNA chimera mimicking NF-κB binding sites. Eur. J. Biochem. 268 , 6066–6075 (2001).
  • Cortesi R , MischiatiC, BorgattiM et al. Formulations for natural and peptide nucleic acids based on cationic polymeric submicron particles. AAPS J. 6(1) , 10–21 (2004).
  • Mischiati C , SereniA, FinottiA et al. Complexation to cationic microspheres of double-stranded peptide nucleic acid-DNA chimeras exhibiting decoy activity. J. Biomed. Sci. 11(5) , 697–704 (2004).
  • Nastruzzi C , CortesiR, EspositoE et al. Liposomes as carriers for DNA-PNA hybrids. J. Control. Release 68(2) , 237–249 (2000).
  • Wojciechowski F , HudsonRH. Nucleobase modifications in peptide nucleic acids. Curr. Top Med. Chem.7(7) , 667–679 (2007).
  • Hansen ME , BentinT, NielsenPE. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers. Nucleic Acids Res.37(13) , 4498–4507 (2009).
  • Manicardi A , CalabrettaA, BencivenniM et al. Affinity and selectivity of C2- and C5-substituted ‘chiral-box‘ PNA in solution and on microarrays. Chirality 22(Suppl. 1) , E161–E172 (2010).
  • Berthold PR , ShiraishiT, NielsenPE. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers. Bioconjug. Chem.21(10) , 1933–1938 (2010).
  • Pensato S , SavianoM, BianchiN et al. γ-hydroxymethyl PNAs: synthesis, interaction with DNA and inhibition of protein/DNA interactions. Bioorg. Chem. 38(5) , 196–201 (2010).
  • Zhou P , Dragulescu-AndrasiA, BhattacharyaB et al. Synthesis of cell-permeable peptide nucleic acids and characterization of their hybridization and uptake properties. Bioorg. Med. Chem. Lett. 16 , 4931–4935 (2006).
  • Zhou P , WangMM, DuL, FisherGW, WaggonerA, LyDH. Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA). J. Am. Chem. Soc.125 , 6878–6879 (2003).
  • Rasmussen FW , BendifallahN, ZacharV et al. Evaluation of transfection protocols for unmodified and modified peptide nucleic acid (PNA) oligomers. Oligonucleotides 16 , 43–57 (2006).
  • Joergensen M , Agerholm-LarsenB, NielsenPE, GehlJ. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry. Oligonucleotides21 , 29–37 (2011).
  • Shiraishi T , NielsenPE. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization. Methods Mol. Biol.683 , 391–397 (2011).
  • Sontheimer EJ , CarthewRW. Silence from within: endogenous siRNAs and miRNAs. Cell122 , 9–12 (2005).
  • Subramanian S , SteerCJ. MicroRNAs as gatekeepers of apoptosis. J. Cell. Physiology223 , 89–98 (2010).
  • Wang YM , BlellochR. Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res.69 , 4093–4096 (2010).
  • Alvarez-Garcia I , MiskaEA. MicroRNA functions in animal development and human disease. Development132 , 4653–4662 (2005).
  • Taccioli C , FabbriE, VisoneR et al. UCbase&miRfunc: a database of ultraconserved sequences and microRNA function. Nucleic Acids Res. 37(Database issue) , D41–D48 (2009).
  • Brown BD , NaldiniL. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat. Rev. Genet.10 , 578–585 (2009).
  • Czech MP . MicroRNAs as therapeutic targets. N. Engl. J. Med.354 , 1194–1195 (2006).
  • Kota SK , BalasubramanianS. Cancer therapy via modulation of microRNA levels: a promising future. Drug Discov. Today15 , 733–740 (2010).
  • Wang Z . MicroRNA interference: an update. J. Biol. Med.1 , 1–12 (2011).
  • Torres AG , FabaniMM, VigoritoE, GaitMJ. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection. RNA17 , 933–943 (2011).
  • Elmén J , LindowM, SchützS, LawrenceM, PetriA, ObadS, et al. LNA-mediated microRNA silencing in non-human primates. Nature452 , 896–900 (2008).
  • Elmén J , LindowM, SilahtarogluA, BakM, ChristensenM, Lind-ThomsenA. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to upregulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res.36 , 1153–1162 (2008).
  • Krutzfeldt J , KuwajimaS, BraichR, RajeevK.G, Pena J et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res.35 , 2885–2892 (2007).
  • Krützfeldt J , RajewskyN, BraichR et al. Silencing of microRNAs in vivo with ‘antagomirs‘. Nature 438 , 685–689 (2005).
  • López-Fraga M , WrightN, JiménezA. RNA interference-based therapeutics: new strategies to fight infectious disease. Infect. Disord. Drug Targets8 , 262–273 (2008).
  • Zhiguo W . MicroRNA interference: an update. J. Biol. Med.1(1) , 1–12 (2011).
  • Boutla A , DelidakisC, TablerM. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res.31(17) , 4973–4980 (2003).
  • Meister G , LandthalerM, DorsettY, TuschlT. Sequence-specific inhibition of microRNA- and siRNA-induced. RNA silencing. RNA10(3) , 544–550 (2004).
  • Krtzfeldt J , RajewskyN, BraichR et al. Silencing of microRNAs in vivo with ‘antagomirs‘. Nature 438(7068) , 685–689 (2005).
  • Krtzfeldt J , KuwajimaS, BraichR et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35(9) , 2885–2892 (2007).
  • Kauppinen S , LundAH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene372 , 137–141 (2006).
  • Davis S , LolloB, FreierS, EsauC. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res.34(8) , 2294–2304 (2006).
  • Fabani MM , GaitMJ. miR-122 targeting with LNA/2´-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA–peptide conjugates. RNA14(2) , 336–346 (2008).
  • Clancy JL , WeiGH, EchnerN et al. mRNA isoform diversity can obscure detection of miRNA-mediated control of translation. RNA 17(6) , 1025–1031 (2011).
  • Lee EK , GorospeM. Coding region: the neglected post-transcriptional code. RNA Biol.8(1) , 44–48 (2011).
  • Wang Z . The concept of multiple-target anti-miRNA antisense oligonucleotide technology. Methods Mol. Biol.676 , 51–57 (2011).
  • Torres AG , ThrelfallRN, GaitMJ. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2‘-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents. Artif. DNA PNA XNA2(3) , 1–8 (2011).
  • Petersen L , de Koning MC, van Kuik-Romeijn P et al. Synthesis and in vitro evaluation of PNA-peptide-DETA conjugates as potential cell penetrating artificial ribonucleases. Bioconjug. Chem.15(3) , 576–582 (2004).
  • Tyagi P , BanerjeeR, BasuS, YoshimuraN, ChancellorM, HuangL. Intravesical antisense therapy for cystitis using TAT-peptide nucleic acid conjugates. Mol. Pharm.3(4) , 398–406 (2006).
  • Frederickson R . PNA–NLS delivers. Nat. Biotechnol.17(8) , 739 (1999).
  • Albertshofer K , SiwkowskiAM, WancewiczEV et al. Structure-activity relationship study on a simple cationic peptide motif for cellular delivery of antisense peptide nucleic acid. J. Med. Chem. 48(21) , 6741–6749 (2005).
  • Leifert JA , WhittonJL. ‘Translocatory proteins‘ and ‘protein transduction domains‘: a critical analysis of their biological effects and the underlying mechanisms. Mol. Ther.8(1) , 13–20 (2003).
  • Chaubey B , TripathiS, GangulyS, HarrisD, CasaleRA, PandeyVN. A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology331(2) , 418–428 (2005).
  • Braun K , PeschkeP, PipkornR et al. A biological transporter for the delivery of peptide nucleic acids (PNAs) to the nuclear compartment of living cells. J. Mol. Biol. 318(2) , 237–243 (2002).
  • Basu S , WickstromE. Synthesis and characterization of a peptide nucleic acid conjugated to a d-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjug. Chem.8(4) , 481–488 (1997).
  • Abes S , TurnerJJ, IvanovaGD et al. Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res. 35(13) , 4495–4502 (2007).
  • Mehiri M , UpertG, TripathiS et al. An efficient biodelivery system for antisense polyamide nucleic acid (PNA). Oligonucleotides 18(3) , 245–256 (2008).
  • Berg K , FoliniM, PrasmickaiteL et al. Photochemical internalization: a new tool for drug delivery. Curr. Pharm. Biotechnol. 8(6) , 362–372 (2007).
  • Shiraishi T , NielsenPE. Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption. Nat. Protoc.1(2) , 633–636 (2006).
  • Qavi AJ , BaileyRC. Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew. Chem. Int. Ed. Engl.49(27) , 4608–4611 (2010).
  • Zhang GJ , ChuaJH, CheeRE, AgarwalA, WongSM. Label-free direct detection of miRNAs with silicon nanowire biosensors. Biosens. Bioelectron.24(8) , 2504–2508 (2009).
  • Pfeffer S , BaumertTF. Impact of microRNAs for pathogenesis and treatment of hepatitis C virus infection. Gastroenterol. Clin. Biol.34(8–9) , 431–435 (2010).
  • Young DD , ConnellyCM, GrohmannC, DeitersA. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J. Am. Chem. Soc.132(23) , 7976–7981 (2010).
  • Morita K , TaketomiA, ShirabeK et al. Clinical significance and potential of hepatic microRNA-122 expression in hepatitis C. Liver Int. 31(4) , 474–484 (2011).
  • Lanford RE , Hildebrandt-EriksenES, PetriA et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962) , 198–201 (2010).
  • Tili E , CroceCM, MichailleJJ. miR-155: on the crosstalk between inflammation and cancer. Int. Rev. Immunol.28(5) , 264–284 (2009).
  • Kong W , HeL, CoppolaM et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem. 285(23) , 17869–17879 (2010).
  • Jiang S , ZhangHW, LuMH et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70(8) , 3119–3127 (2010).
  • Bianchi N , ZuccatoC, LamprontiI, BorgattiM, GambariR. Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep.42(8) , 493–499 (2009).
  • Yan LX , WuQN, ZhangY et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 13(1) , R2 (2011).
  • Chaubey B , TripathiS, PandeyVN. Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides18(1) , 9–20 (2008).
  • Ganguly S , ChaubeyB, TripathiS et al. Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides 18(3) , 277–286 (2008).
  • Corradini R , SforzaS, TedeschiT, TotsinganF, ManicardiA, MarchelliR. Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges. Curr. Top Med. Chem.11(12) , 1535–1554 (2011).
  • Sahu B , SacuiI, RapireddyS et al. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J. Org. Chem. 76(14) , 5614–5627 (2011).
  • Wojciechowski F , HudsonRH. Peptide nucleic acid containing a meta-substituted phenylpyrrolocytosine exhibits a fluorescence response and increased binding affinity toward RNA. Org. Lett.11(21) , 4878–4881 (2009).
  • Govindaraju T , MadhuriV, KumarVA, GaneshKN. Cyclohexanyl peptide nucleic acids (chPNAs) for preferential RNA binding: effective tuning of dihedral angle beta in PNAs for DNA/RNA discrimination. J. Org. Chem.71(1) , 14–21 (2006).
  • Sforza S , TedeschiT, CalabrettaA et al. A peptide nucleic acid embedding a pseudo peptide nuclear localization sequence in the backbone bahaves as a peptide mimic. Eur. J. Org. Chem. 13 , 2441–2444 (2010).
  • Ishizuka T , TedeschiT, CorradiniR, KomiyamaM, SforzaS, MarchelliR. SSB-assisted duplex invasion of preorganized PNA into double-stranded DNA. Chem. Bio. Chem.10(16) , 2607–2612 (2009).
  • Ishizuka T , YoshidaJ, YamamotoY et al. Chiral introduction of positive charges to PNA for double-duplex invasion to versatile sequences. Nucleic Acid Res. 36(5) , 1464–1471 (2008).
  • Yuan X , MaZ, ZhouW et al. Lipid-mediated delivery of peptide nucleic acids to pulmonary endothelium. Biochem. Biophys. Res. Commun. 302(1) , 6–11 (2003).
  • Cutrona G , BoffaLC, MarianiMR et al. The peptide nucleic acid targeted to a regulatory sequence of the translocated c-myc oncogene in Burkitt‘s lymphoma lacks immunogenicity: follow-up characterization of PNAEmu-NLS. Oligonucleotides 17(1) , 146–150 (2007).
  • Ahn DG , LeeW, ChoiJK et al. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res. 91(1) , 1–10 (2011).
  • Upadhyay A , PonzioNM, PandeyVN. Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides18 , 329–336 (2008).

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.