351
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetics and Genetics in Endometrial Cancer: New Carcinogenic Mechanisms and Relationship with Clinical Practice

, , , , , , & show all
Pages 147-162 | Published online: 27 Mar 2012

References

  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Wajed SA , LairdPW, DeMeesterTR. DNA methylation: an alternative pathway to cancer. Ann. Surg.234(1) , 10–20 (2001).
  • Muraki Y , BannoK, YanokuraM et al. Epigenetic DNA hypermethylation: clinical applications in endometrial cancer (Review). Oncol. Rep. 22(5) , 967–972 (2009).
  • Velasco A , PallaresJ, SantacanaM et al. Promoter hypermethylation and expression of sprouty 2 in endometrial carcinoma. Hum. Pathol. 42(2) , 185–193 (2011).
  • Pallares J , VelascoA, EritjaN et al. Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma. Mod. Pathol. 21(6) , 691–699 (2008).
  • Kang HS , BabaT, MandaiM et al. GPR54 is a target for suppression of metastasis in endometrial cancer. Mol. Cancer Ther. 10(4) , 580–590 (2011).
  • Yi TZ , GuoJ, ZhouL et al. Prognostic value of E-cadherin expression and CDH1 promoter methylation in patients with endometrial carcinoma. Cancer Invest. 29(1) , 86–92 (2011).
  • Dewdney SB , RimelBJ, ThakerPH et al. Aberrant methylation of the X-linked ribosomal S6 kinase RPS6KA6 (RSK4) in endometrial cancers. Clin. Cancer Res. 17(8) , 2120–2129 (2011).
  • Kawaguchi M , BannoK, YanokuraM et al. Analysis of candidate target genes for mononucleotide repeat mutation in microsatellite instability-high (MSI-H) endometrial cancer. Int. J. Oncol. 35(5) , 977–982 (2009).
  • Ignatov A , BischoffJ, IgnatovT et al. APC promoter hypermethylation is an early event in endometrial tumorigenesis. Cancer Sci.101(2) , 321–327 (2010).
  • Satoh A , ToyotaM, ItohF et al. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res. 63(24) , 8606–8613 (2003).
  • Wang X , YangY, XuC et al. CHFR suppression by hypermethylation sensitizes endometrial cancer cells to paclitaxel. Int. J. Gynecol. Cancer 21(6) , 996–1003 (2011).
  • Lo TL , YusoffP, FongCW et al. The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res. 64(17) , 6127–6136 (2004).
  • Sutterluty H , MayerCE, SetinekU et al. Down-regulation of Sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Mol. Cancer Res. 5(5) , 509–520 (2007).
  • Fong CW , ChuaMS, McKieAB et al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res. 66(4) , 2048–2058 (2006).
  • Holliday R . The inheritance of epigenetic defects. Science238(4824) , 163–170 (1987).
  • Schofield PN , JoyceJA, LamWK et al. Genomic imprinting and cancer; new paradigms in the genetics of neoplasia. Toxicol. Lett. 120(1–3) , 151–160 (2001).
  • Peltomäki P . Lynch syndrome genes. Fam. Cancer4(3) , 227–232 (2005).
  • Kondo E , FurukawaT, YoshinagaK et al. Not hMSH2 but hMLH1 is frequently silenced by hypermethylation in endometrial cancer but rarely silenced in pancreatic cancer with microsatellite instability. Int. J. Oncol. 17(3) , 535–541 (2000).
  • Banno K , YanokuraM, KawaguchiM et al. Epigenetic inactivation of the CHFR gene in cervical cancer contributes to sensitivity to taxanes. Int. J. Oncol. 31(4) , 713–720 (2007).
  • Suter CM , MartinDI, WardRL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet.36(5) , 497–501 (2004).
  • Hitchins MP , WongJJ, SuthersG et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N. Engl. J. Med. 356(7) , 697–705 (2007).
  • Goel A , NguyenTP, LeungHC et al. De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int. J. Cancer128(4) , 869–878 (2011).
  • Chan TL , YuenST, KongCK et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet. 38(10) , 1178–1183 (2006).
  • van der Gun BT , MelchersLJ, RuitersMH, de Leij LF, McLaughlin PM, Rots MG. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis31(11) , 1913–1921 (2010).
  • Ligtenberg MJ , KuiperRP, ChanTL et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3´ exons of TACSTD1. Nat. Genet. 41(1) , 112–117 (2009).
  • Kozaki K , ImotoI, MogiS, OmuraK, InazawaJ. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res.68(7) , 2094–2105 (2008).
  • Furuta M , KozakiKI, TanakaS, AriiS, ImotoI, InazawaJ. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis31(5) , 766–776 (2010).
  • Pierson J , HostagerB, FanR, VibhakarR. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J. Neurooncol.90(1) , 1–7 (2008).
  • Saito Y , FriedmanJM, ChiharaY, EggerG, ChuangJC, LiangG. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun.379(3) , 726–731 (2009).
  • Nakano H , MiyazawaT, KinoshitaK, YamadaY, YoshidaT. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int. J. Cancer127(5) , 1072–1080 (2010).
  • Huang YW , LiuJC, DeatherageDE et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 69(23) , 9038–9046 (2009).
  • Tsuruta T , KozakiKI, UesugiA et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 71(20) , 6450–6462 (2011).
  • Stumpel DJ , SchotteD, Lange-TurenhoutEA et al. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25(3) , 429–439 (2011).
  • Chen Y , SongY, WangZ et al. Altered expression of miR-148a and miR-152 in gastrointestinal cancers and its clinical significance. J. Gastrointest. Surg. 14(7) , 1170–1179 (2010).
  • Braconi C , HuangN, PatelT. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology51(3) , 881–890 (2010).
  • Chen HZ , TsaiSY, LeoneG. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer9(11) , 785–797 (2009).
  • Trusolino L , BertottiA, ComoglioPM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol.11(12) , 834–848 (2010).
  • Roulin D , CerantolaY, Dormond-MeuwlyA, DemartinesN, DormondO. Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. Mol. Cancer9 , 57 (2010).
  • Guertin DA , StevensDM, SaitohM et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15(2) , 148–159 (2009).
  • Dakalakis M , NguyenTT, NguenC et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2´-deoxy cytidine (decitabine) treatment. Blood 100(8) , 2957–2964 (2002).
  • Issa JP , Garcia-ManeroG, GilesFJ. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2´-deoxycytidine(decitabine) in hematopoietic malignancies. Blood103(5) , 1635–1640 (2004).
  • Satoh A , ToyotaM, ItohF. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res.63(24) , 8606–8613 (2003).
  • Scolnick DM , HalazonetisTD. Chfr defines amitotic stress checkpoint that delays entry into metaphase. Nature406(6794) , 430–435 (2000).
  • Kang D , ChenJ, WongJ. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J. Cell Biol.156(2) , 249–259 (2002).
  • Yu X , Minter-DykhouseK, MalureanuL. Chfr is required for tumor suppression and Aurora A regulation. Nat. Genet.37(4) , 401–406 (2005).
  • Toyota M , SasakiY, SatohA. Epigenetic inactivation of CHFR in human tumors. Proc. Natl Acad. Sci. USA100(13) , 7818–7823 (2003).
  • Ogi K , ToyotaM, MitaH. Small interfering RNA-induced CHFR silencing sinsitizes oral squamous cell cancer cells to microtubule inhibitors. Cancer Biol. Ther.4(7) , 773–780 (2005).
  • Koga Y , KitajimaY, MiyoshiA. The significance of aberrant CHFR methylation for clinical response to microtubule inhibitors in gastric cancer. J. Gastroenterol.41(2) , 133–139 (2006).
  • Jenuwein T , AllisCD. Translating the histone code. Science293(5532) , 1074–1080 (2001).
  • Bhalla KN . Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J. Clin. Oncol.23(17) , 3971–3993 (2005).
  • Krusche CA , VloetAJ, Classen-LinkeI, von Rango U, Beier HM, Alfer J. Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas. Hum. Reprod.22(11) , 2956–2966 (2007).
  • Weichert W , DenkertC, NoskeA et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 10(9) , 1021–1027 (2008).
  • Takai N , KawamataN, GuiD, SaidJW, MiyakawaI, KoefflerHP. Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis. Cancer101(12) , 2760–2770 (2004).
  • Gui CY , NgoL, XuWS, RichonVM, MarksPA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl Acad. Sci. USA101(5) , 1241–1246 (2004).
  • Marchion D , MunsterP. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev. Anticancer Ther.7(4) , 583–598 (2007).
  • Takai N , NaraharaH. Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr. Med. Chem.14(24) , 2548–2553 (2007).
  • Uchida H , MaruyamaH, NgashimaT, AsadaH, YoshimuraY. Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycoderin. Endocrinology146(129) , 5365–5373 (2005).
  • Sandor V , RobbinsAR, RobeyR, MyersT. FR901228 causes mitotic arrest but does not alter microtubule polymerization. Anticancer Drugs11(6) , 445–454 (2011).
  • Dowdy SC , JiangS, ZhouXC et al. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol. Cancer Ther. 5(11) , 2767–2776 (2006).
  • Camacho LH , OlsonJ, TongWP, YoungCW, SpriggsDR, MalkinMG. Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest. New Drugs25(2) , 131–138 (2007).
  • Modesitt SC , SillM, HoffmanJS, BenderDP. A Phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol.109(2) , 182–186 (2008).
  • Takai N , DesmondJC, KumagaiT et al. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res. 10(3) , 1141–1149 (2004).
  • Takai N , UedaT, NishidaM et al. CBHA is a family of hybrid polar compounds that inhibit histone deacetylase, and induces growth inhibition, cell cycle arrest and apoptosis in human endometrial and ovarian cancer cells. Oncology 70(2) , 97–105 (2006).
  • Takai N , UedaT, NishidaM, Nasu,K, NaraharaH. A novel histone deacetylase inhibitor, Scriptaid, induces growth inhibition, cell cycle arrest and apoptosis in human endometrial cancer and ovarian cancer cells. Int. J. Mol. Med.17(2) , 323–329 (2006).
  • Terao Y , NishidaJ, HoriuchiS et al. Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells. Int. J. Cancer 94(2) , 257–267 (2001).
  • Jiang S , DowdySC, MengXW et al. Histone deacetylase inhibitors induce apoptosis in both type I and type II endometrial cancer cells. Gynecol. Oncol. 105(2) , 493–500 (2007).
  • Jung M , BroschG, KölleD, ScherfH, GerhäuserC, LoidlP. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J. Med. Chem.42(22) , 4669–4679 (1999).
  • Ueda T , TakaiN, NishidaM, NasuK, NaraharaH. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int. J. Mol. Med.19(2) , 301–308 (2007).
  • Vasen HF , WatsonP, MecklinJP, LynchHT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology116(6) , 1453–1456 (1999).
  • Boland CR , ShikeM. Report from the Jerusalem workshop on Lynch syndrome-hereditary nonpolyposis colorectal cancer. Gastroenterology138(7) , 2197.e1–2197.e7 (2010).
  • Hampel H , PanescuJ, LockmanJ et al. Comment on: screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 67(19) , 9603 (2007).
  • Meyer LA , BroaddusRR, LuKH. Endometrial cancer and Lynch syndrome: clinical and pathologic considerations. Cancer Control16(1) , 14–22 (2009).
  • Dunlop MG , FarringtonSM, CarothersAD et al. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum. Mol. Genet. 6(1) , 105–110 (1997).
  • Vasen HF , WijnenJT, MenkoFH et al. Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110(4) , 1020–1027 (1996).
  • Peltomaki P , VasenH. Mutations associated with HNPCC predisposition – update of ICG-HNPCC/INSiGHT mutation database. Dis. Markers20(4–5) , 269–276 (2004).
  • Schweizer P , MoisioAL, KuismanenSA et al. Lack of MSH2 and MSH6 characterizes endometrial but not colon carcinomas in hereditary nonpolyposis colorectal cancer. Cancer Res. 61(7) , 2813–2815 (2001).
  • Banno K , SusumuN, HiraoT et al. Identification of germline MSH2 gene mutations in endometrial cancer not fulfilling the new clinical criteria for hereditary nonpolyposis coloretcal cancer. Cancer Genet. Cytogenet. 146(1) , 58–65 (2003).
  • Broaddus RR , LynchHT, ChenLM et al. Pathologic features of endometrial carcinoma associated with HNPCC: a comparison with sporadic endometrial carcinoma. Cancer 106(1) , 87–94 (2006).
  • Vasen HF , WatsonP, MecklinJP et al. The epidemiology of endometrial cancer in hereditary nonpolyposis colorectal cancer. Anticancer Res. 14(4B) , 1675–1678 (1994).
  • Boks DE , TrujilloAP, VoogdAC, MorreauH, KenterGG, VasenHF. Survival analysis of endometrial carcinoma associated with hereditary nonpolyposis colorectal cancer. Int. J. Cancer102(2) , 198–200 (2002).
  • Hampel H , FrankelW, PanescuJ et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 66(15) , 7810–7817 (2006).
  • Hirai Y , BannoK, SuzukiM et al. Molecular epidemiological and mutational analysis of DNA mismatch repair (MMR) genes in endometrial cancer patients with HNPCC-associated familial predisposition to cancer. Cancer Sci. 99(9) , 1715–1719 (2008).
  • Banno K , YanokuraM, KobayashiY et al. Endometrial cancer as a familial tumor: pathology and molecular carcinogenesis (review). Curr. Genomics 10(2) , 127–132 (2009).
  • Lancaster JM , PowellCB, KauffND et al. Society of Gynecologic Oncologists Education Committee statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol. Oncol. 107(2) , 159–162 (2007).
  • Boland CR , ThibodeauSN, HamiltonSR et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58(22) , 5248–5257 (1998).
  • Esteller M , LevineR, BaylinSB, EllensonLH, HermanJG. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene17(18) , 2413–2417 (1998).
  • Resnick KE , HampelH, FishelR, CohnDE. Current and emerging trends in Lynch syndrome identification in women with endometrial cancer. Gynecol. Oncol.114(1) , 128–134 (2009).
  • Lindor NM , PetersenGM, HadleyDW et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA 296(12) , 1507–1517 (2006).
  • Vasen HF , MosleinG, AlonsoA et al. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J. Med. Genet. 44(6) , 353–362 (2007).
  • Ollikainen M , Abdel-RahmanWM, MoisioAL et al. Molecular analysis of familial endometrial carcinoma: a manifestation of hereditary nonpolyposis colorectal cancer or a separate syndrome? J. Clin. Oncol. 23(21) , 4609–4616 (2005).
  • Jacques SM , QureshiF, RamirezNC, MalviyaVK, LawrenceWD. Tumors of the uterine isthmus: Clinicopathologic features and immunohistochemical characterization of p53 expression and hormone receptors. Int. J. Gynecol. Pathol.16(1) , 38–44 (1997).
  • Westin S , LacourR, UrbauerD et al. Carcinoma of the lower uterine segment: a newly described association with Lynch syndrome. J. Clin. Oncol. 26(36) , 5965–5971 (2008).
  • Masuda K , BannoK, YanokuraM et al. Carcinoma of the lower uterine segment (LUS): clinicopathological characteristics and association with lynch syndrome. Curr. Genomics 12(1) , 25–29 (2011).
  • Hachisuga T , KakuT, EnjojiM. Carcinoma of the lower uterine segment. Clinicopathologic analysis of 12 cases. Int. J. Gynecol. Pathol.8(1) , 26–35 (1989).
  • Watanabe Y , NakajimaH, NozakiK et al. Clinicopathologic and immunohistochemical features and microsatellite status of endometrial cancer of the uterine isthmus. Int. J. Gynecol. Pathol. 20(4) , 368–373 (2001).
  • Nelen MR , KremerH, KoningsIB et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotype–phenotype correlations. Eur. J. Hum. Genet. 7(3) , 267–273 (1997).
  • Nelen MR , PadbergGW, PeetersEA et al. Localization of the gene for Cowden disease to chromosome 10.22 – 23. Nat. Genet. 13(1) , 114–116 (1996).
  • Liaw D , MarshDJ, LiJ et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16(1) , 64–67 (1997).
  • Salem OS , SteckWD. Cowden‘s disease (multiple hamartoma and neoplasia syndrome). A case report and review of the English literature. J. Am. Acad. Dermatol.8(5) , 686–696 (1983).
  • Higuchi M , OnishiK, KikuchiC, GotohY. Scaffolding function of PAK in the PDK1-Akt pathway. Nat. Cell Biol.10(1) , 1356–1364 (2008).
  • Black D , BogomolniyF, RobsonME, PffitK, BarakatRR, BoydJ. Evaluation of germline PTEN mutations in endometrial cancer patients. Gynecol. Oncol.96(1) , 1–24 (2005).
  • Stambolic V , TsaoMS, MacphersonD, SuzukiA, ChapmanWB, MakTW. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in PTEN+/- mice. Cancer Res.60(13) , 3605–3611 (2000).
  • Sardinoux M , RaingeardI, BessisD, CoupierI, RenardE, BringerJ. Cowden syndrome, or multiple hamartomatous tumor syndrome, in clinical endocrinology. Ann. Endocrinol.71(4) , 264–273 (2010).
  • Farooq A , WalkerLJ, BowlingJ, AudisioRA. Cowden syndrome. Cancer Treat. Rev.36(8) , 577–583 (2010).
  • Gustafson S , ZbukKM, ScacheriC, EngC. Cowden syndrome. Semin. Oncol.34(5) , 428–434 (2007).
  • Schmeler KM , DanielsMS, BrandtAC, LuKH. Endometrial cancer in an adolescent: a possible manifestation of Cowden syndrome. Obstet. Gynecol.114(2) , 477–479 (2009).
  • Beggs AD , LatchfordAR, VasenHF et al. Peutz–Jeghers syndrome: a systematic review and recommendations for management. Gut 59(7) , 975–986 (2010).
  • Scully RE . Sex cord tumor with annular tubules a distinctive ovarian tumor of the Peutz–Jeghers syndrome. Cancer25(5) , 1107–1121 (1970).
  • Giardiello FM , BrensingerJD, TersmetteAC et al. Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology 119(6) , 1447–1453 (2000).
  • Conteras CM , GurumurthyS, HaynieJM et al. Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res. 68(3) , 759–766 (2008).
  • Kondi-Pafiti A , BakalianouK, IavazzoC, DastamaniC, HasiakosD, LiapisA. Endometrial carcinoma and ovarian sex cord tumor with annular tubules in a patients with history of Peutz-Jegers syndrome and multiple malignancies. Eur. J. Gynaecol. Oncol.32(49) , 452–454 (2011).
  • Pleasance ED , CheethamRK, StephensePJ et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278) , 191–196 (2009).
  • Pleasance ED , StephensPJ, O‘MearaS et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278) , 184–190 (2009).
  • Cancer Genome Atlas Research Network. comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216) , 1061–1068 (2008).
  • Cancer Genome Atlas Research Network. Integrated genomic analysis of ovarian carcinoma. Nature474(7353) , 609–615 (2011)
  • The International Cancer Genome Consortium. International network of cancer genome projects. Nature464(7291) , 993–998 (2010).
  • Takai N , NaraharaH. Array-based approach for the identification of epigenetic silenced tumor suppressor genes. Curr. Genomics9(1) , 22–24 (2008).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.