194
Views
0
CrossRef citations to date
0
Altmetric
Review

The Finger of an Angel: Memory Return with Epigenetic Manipulation

&
Pages 295-302 | Published online: 12 Jun 2012

References

  • Weiner J . The finger of the angel. In: Time, Love, Memory: a Great Biologist and His Quest for the Origins of Behavior. Knopf, NY, USA, 46–71 (1999).
  • Watson JD , BackerTA, StephenPB, GannA, LevineM, LosickR. Genome structure, chromatin, and the nucleosome. In: Molecular Biology of the Gene. Cold Spring Harbor Laboratory Press, NY, USA, 135–194 (2007).
  • Crick FH . On protein synthesis. Symp. Soc. Exp. Biol.12 , 138–163 (1958).
  • Crick FH . Theory in molecular biology. In: What Mad Pursuit: a Personal View of Scientific Discovery. Basic Books, NY, USA, 108–116 (1988).
  • Judson HF . “My mind was that a dogma was an idea for which there was no reasonable evidence. You see?”. In: The Eighth Day of Creation: The Makers of the Revolution in Biology. Cold Spring Harbor Laboratory Press, NY, USA, 400–500 (1996).
  • Thieffry D , SarkarS. Forty years under the central dogma. Trends Biochem. Sci.23 , 312–316 (1998).
  • Schreiber SL . Small molecules: the missing link in the central dogma. Nat. Chem. Biol.1 , 64–66 (2005).
  • Maydanovych O , BealPA. Breaking the central dogma by RNA editing. Chem. Rev.106 , 3397–3411 (2006).
  • Stotz K . Molecular epigenesis: distributed specificity as a break in the central dogma. Hist. Phil. Life Sci.28 , 527–544 (2006).
  • Shapiro JA . Revisiting the central dogma in the 21st century. Ann. NY Acad. Sci.1178 , 6–28 (2009).
  • Morange M . Fifty years of the central dogma. J. Biosci.33 , 171–175 (2008).
  • Speybroeck LV . The organism: a crucial genomic context in molecular epigenetics? Theory Biosci.119 , 187–208 (2000).
  • Volpe TA , KidnerC, HallIM, TengG, GrewalSI, MartienssenRA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297 , 1833–1837 (2002).
  • Tchuikov NA , KretovaOV, ChernovBK, GolovaYB, ZhimulexIF, ZykovIA. SuUR protein binds to the boundary regions separating forum domains in Drosophila melanogaster. J. Biol. Chem.297 , 11705–11710 (2004).
  • Lippman Z , GendrelAV, BlackM et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430 , 471–476 (2004).
  • Levenson JM , RothTL, LubinFD et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281 , 15763–15773 (2006).
  • Miller CA , SweattJD. Covalent modification of DNA regulates memory formation. Neuron53 , 857–869 (2007).
  • Lubin FD , RothTL, SweattJD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci.28 , 10576–10586 (2008).
  • Feng J , ZhouY, CampbellS et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13 , 423–430 (2010).
  • Garber KB , VisootsakJ, WarrenST. Fragile X syndrome. Eur. J. Hum. Genet.16 , 666–672 (2008).
  • Godler DE , TassoneF, LoeschDZ et al. Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio. Hum. Mol. Genet. 19 , 1618–1632 (2010).
  • Pietrobono R , PomponiMG, TabolacciE, OostraB, ChiurazziP, Neri Giovanni. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res.30 , 3278–3285 (2002).
  • Levenson JM , O‘RiordanKJ, BrownKD, TrinhMA, MolfeseDL, SweattJD. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem.279 , 40545–40559 (2004).
  • Kilgore M , MillerCA, FassDM et al. Inhibitors of class 2 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer‘s disease. Neuropsychopharmacology 35 , 870–880 (2010).
  • Guan JS , HaggartySJ, GiacomettiE et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459 , 55–64 (2009).
  • McQuown SC , BarrettRM, MatheosDP et al. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 31 , 764–774 (2011).
  • Fischer A , SananbenesiF, WangX, DobbinM, TsaiLH. Recovery of learning and memory is associated with chromatin remodeling. Nature447 , 178–182 (2007).
  • Patrick GN , ZukerbergL, NikolicM, MonteS, DikkesP, TsaiLH. p25 protein in neurodegeneration. Nature411 , 763–764 (2001).
  • Patrick GN , ZukerbergL, NikolicM, MonteS, DikkesP, TsaiLH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature402 , 615–622 (1999).
  • Lee M , KwonYT, LiM et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405 , 360–364 (2000).
  • Nath R , DavisM, ProbertAW et al. Processing of cdk5 activator p35 to its truncated form (p25) by Calpain in acutely injured neuronal cells. Biophys. Res. Commun. 274 , 16–21 (2000).
  • Korzus E . Manipulating the brain with epigenetics. Nat. Neurosci.13 , 405–406 (2010).
  • Wood MA , KaplanMP, ParkA et al. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibits deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12 , 111–119 (2005).
  • Alarcon JM , MalleretG, TouzaniK et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in rubinstein-taybi syndrome and its amelioration. Neuron 42 , 947–959 (2004).
  • Giralt A , PuigdellivolM, CarretonO et al. Long-term memory deficits in Huntington‘s disease are associated with reduced CBP histone acetylase activity. Hum. Mol. Genet. 21(6) , 1203–1216 (2011).
  • Korzus E , RosenfeldMG, MayfordM. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron42 , 961–972 (2004).
  • Vecsey CG , HawkJD, LattalKM et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J. Neurosci. 27 , 6128–6148 (2007).
  • Barrett RM , MalvaezM, KramarE et al. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36 , 1545–1556 (2011).
  • Miller CA , CampbellmSL, SweattJD. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol. Learn. Mem.89 , 599–603 (2008).
  • Martinowich K , HattoriD, WuH et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302 , 890–893 (2003).
  • Nan X , NgHH, JohnsonCA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393 , 386–389 (1998).
  • Kokura K , KaulSC, WadhwaR et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J. Biol. Chem. 276 , 34115–34121 (2001).
  • Chahrour M , ZoghbiHY. The story of Rett syndrome: from clinic to neurobiology. Neuron56 , 422–437 (2007).
  • Shahbazian MD , YoungJI, Yuva-PaylorLA et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35 , 243–254 (2002).
  • Waddington CH . The epigenotype. Endeavour1 , 18–20 (1942).
  • Holliday R . Epigenetics: an overview. Dev. Genet.15 , 453–457 (1994).
  • Russo VEA , MartienssenRA, RiggsAD. Overview of epigenetic mechanisms. In: Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press, MN, USA, 1–29 (1996).
  • Wu C t, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science293 , 1103–1107 (2001).
  • Allis CD , JenuweinT, ReinbergD, CaparrosM. A brief history of epigenetics. In: Epigenetics. Cold Spring Harbor Laboratory Press, NY, USA, 15–22 (2006).
  • Berger SL , KouzaridesT, ShiekhattarR, ShilatifardA. An operational definition of epigenetics. Genes Dev.23 , 781–783 (2009).
  • Bird A . Perceptions of epigenetics. Nature447 , 396–398 (2007).
  • Lippman Z , MayB, YordanC et al. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1 , 420–428 (2003).
  • Miranda TB , JonesPA. DNA methylation: the nuts and bolts of repression. J. Cell. Physiol.213 , 384–390 (2007).
  • Attwood JT , YungRL, RichardsonBC. DNA methylation and the regulation of gene transcription. Cell. Mol. Life Sci.59 , 241–257 (2002).
  • Levenson JM , SweattJD. Epigenetic mechanisms in memory formation. Nature6 , 108–118 (2005).
  • Wade PA , PrussD, WolffeAP. Histone acetylation: chromatin in action. Trends Biochem. Sci.22 , 128–132 (1997).
  • Shahbazian MD , GrunsteinM. Functions of site-specific histone acetylation and deacetylation. Ann. Rev. Biochem.76 , 75–100 (2007).
  • Margueron R , TrojerP, ReinbergD. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev.15 , 163–176 (2005).
  • Strahl BD , AllisCD. The language of covalent histone modifications. Nature403 , 41–45 (2000).
  • Annunziato AT , HansenJC. Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Exp.9 , 37–61 (2000).
  • Li Q , ZhouH, WurteleH et al. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134 , 244–255 (2008).
  • Tulving E , CraikFI. Study of memory. In: The Oxford Handbook of Memory. Oxford University Press, NY, USA, 1–60 (2000).
  • Baddeley A , EysenckMW, AndersonMC. What is memory? In: Memory. Psychology Press, NY, USA, 1–17 (2009).
  • Byrnes JP . Memory. In: Minds, Brains, and Learning: Understanding the Psychological and Educational Relevance of Neuroscientific Research. The Guilford Press, NY, USA, 47–71 (2001).
  • Martin KC , BaradM, KandelER. Local protein synthesis and its role in synapse-specific plasticity. Curr. Opin. Neurobiol.10 , 587–592 (2000).
  • Kelleher RJ 3rd, Govindarajan A, Tonegawa S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron44 , 59–73 (2004).
  • Bramham CR , WellsDG. Dendritic mRNA: transport, translation and function. Nat. Rev. Neurosci.8 , 776–789 (2007).
  • Ahles TA , SaykinAJ. Candidate mechanisms for chemotherapy-induced cognitive changes. Cancer7 , 192–201 (2007).
  • Squire LR . Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem.82 , 171–177 (2004).
  • Davis HP , SquireLR. Protein synthesis and memory: a review. Psychol. Bull.96 , 518–559 (1984).
  • Spencer JPE . Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc. Nutr. Soc.67 , 238–252 (2008).
  • Zola-Morgan SM , SquireLR. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science250 , 288–290 (1990).
  • Roth TL , SweattJD. Regulation of chromatin structure in memory formation. Neurobiology19 , 336–342 (2009).
  • Anagnostaras SG , GaleGD, FanselowMS. Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus11 , 8–17 (2001).
  • Rudy JW , SutherlandRJ. Is it systems or cellular consolidation? Time will tell. An alternative interpretation of the Morries group‘s recent science paper. Neurobiol. Learn. Mem.89 , 366–369 (2007).
  • Sutherland RJ , LehmannH. Alternative conceptions of memory consolidation. Curr. Opin. Neurobiol.21 , 446–451 (2011).
  • Abel T , ZukinRS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol.8 , 57–64 (2008).
  • Urdinguio RG , Sanchez-MutJV, EstellerM. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol.8 , 1056–1072 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.