7,149
Views
5
CrossRef citations to date
0
Altmetric
Perspective

Prenatal Nutrition, Epigenetics and Schizophrenia Risk: Can We Test Causal Effects?

, , , , &
Pages 303-315 | Published online: 12 Jun 2012

References

  • Cardno AG , MarshallEJ, CoidB et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch. Gen. Psychiatry 56 , 162–168 (1999).
  • Shi J , GershonES, LiuC. Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr. Res.104 , 96–107 (2008).
  • Gilbody S , LewisS, LightfootT. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am. J. Epidemiol.165 , 1–13 (2007).
  • Peerbooms OLJ , van Os J, Drukker M et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav. Immun.25 , 1530–1543 (2011).
  • Lee SH , DecandiaTR, RipkeS et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44 , 247–250 (2012).
  • International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature455 , 237–241 (2008).
  • Petronis A , GottesmanII, KanP et al. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr. Bull. 29 , 169–178 (2003).
  • Petronis A . The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol. Psychiatry55 , 965–970 (2004).
  • Petronis A , PatersonAD, KennedyJL. Schizophrenia: an epigenetic puzzle? Schizophr. Bull.25 , 639–655 (1999).
  • Goldberg AD , AllisCD, BernsteinE. Epigenetics: a landscape takes shape. Cell128 , 635–638 (2007).
  • Wolff GL , KodellRL, MooreSR, CooneyCA. Maternal epigenetics and methyl supplements affect Agouti gene expression in A(vy)/a mice. FASEB J.12 , 949–957 (1998).
  • Cooney CA , DaveAA, WolffGL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr.132(8 Suppl.) , S2393–S2400 (2002).
  • Waterland RA , JirtleRL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol.23 , 5293–5300 (2003).
  • Sandovici I , SmithNH, NitertMD et al. Maternal diet and aging alter the epigenetic control of a promoter–enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc. Matl Acad. Sci. 108 , 5449–5454 (2011).
  • Waterland RA , DolinoyDC, LinJR, SmithCA, ShiX, TahilianiKG. Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis44 , 401–406 (2006).
  • Morgan HD , SutherlandHGE, MartinDIK, WhitelawE. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet.23 , 314–318 (1999).
  • Wolff GL , RobertsDW, GalbraithDB. Prenatal determination of obesity, tumor susceptibility, and coat color pattern in viable yellow (Avy/a) mice. The yellow mouse syndrome. J. Hered.77 , 151–158 (1986).
  • Wolff GL , RobertsDW, MountjoyKG. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol. Genomics1 , 151–163 (1999).
  • Waterland RA , TravisanoM, TahilianiKG, RachedMT, MirzaS. Methyl donor supplementation prevents transgenerational amplification of obesity. Int. J. Obes. (Lond.)32 , 1373–1379 (2008).
  • Dolinoy DC , HuangD, JirtleRL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl Acad. Sci.104 , 13056–13061 (2007).
  • Seki Y , WilliamsL, VuguinPM, CharronMJ. Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology153(3) , 1031–1038 (2012).
  • Li CC , CropleyJE, CowleyMJ, PreissT, MartinDI, SuterCM. A sustained dietary change increases epigenetic variation in isogenic mice. PLoS Genet.7 , e1001380 (2011).
  • Heijmans BT , TobiEW, SteinAD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. 105 , 17046–17049 (2008).
  • Chen DY , SternSA, Garcia-OstaA et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469 , 491–497 (2011).
  • Lumey L , TerryMB, Delgado-CruzataL et al. Adult global DNA methylation in relation to pre-natal nutrition. Int. J. Epidemiol. 41(1) , 116–123 (2011).
  • Waterland RA , KellermayerR, LaritskyE et al. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6 , e1001252 (2010).
  • Crider KS , QuinlivanEP, BerryRJ et al. Genomic DNA methylation changes in response to folic acid supplementation in a population-based intervention study among women of reproductive age. PLoS ONE 6 , e28144 (2011).
  • Stidley CA , PicchiMA, LengS et al. Multivitamins, folate, and green vegetables protect against gene promoter methylation in the aerodigestive tract of smokers. Cancer Res. 70 , 568–574 (2010).
  • Pufulete M , Al-GhnaniemR, KhushalA et al. Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut 54 , 648–653 (2005).
  • Steegers-Theunissen RP , Obermann-BorstSA, KremerD et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE 4 , e7845 (2009).
  • Hoyo C , MurthaAP, SchildkrautJM et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 6 , 928–936 (2011).
  • Cooper WN , KhulanB, OwensS et al. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J. 26(5) , 1782–1790 (2012).
  • St Clair D , XuM, WangP et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294 , 557–562 (2005).
  • Susser E , NeugebauerR, HoekHW et al. Schizophrenia after prenatal famine. Further evidence. Arch. Gen. Psychiatry 53 , 25–31 (1996).
  • Xu MQ , SunWS, LiuBX et al. Prenatal malnutrition and adult schizophrenia: further evidence from the 1959–1961 Chinese famine. Schizophr. Bull. 35 , 568–576 (2009).
  • Susser E , HoekHW, BrownA. Neurodevelopmental disorders after prenatal famine: the story of the Dutch Famine Study. Am. J. Epidemiol.147 , 213–216 (1998).
  • Stein Z . Famine And Human Development: The Dutch Hunger Winter of 1944–1945. Oxford University Press, NY, USA (1975).
  • Hoek HW , SusserE, BuckKA, LumeyLH, LinSP, GormanJM. Schizoid personality disorder after prenatal exposure to famine. Am. J. Psychiatry153 , 1637–1639 (1996).
  • Gunawardana L , Davey Smith G, Zammit S et al. Pre-conception inter-pregnancy interval and risk of schizophrenia. Br. J. Psychiatry199 , 338–339 (2011).
  • McGrath J , EylesD, MowryB, YolkenR, BukaS. Low maternal vitamin D as a risk factor for schizophrenia: a pilot study using banked sera. Schizophr. Res.63 , 73–78 (2003).
  • McGrath J . Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophr. Res.40 , 173–177 (1999).
  • Brown AS , BottiglieriT, SchaeferCA et al. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch. Gen. Psychiatry 64 , 31–39 (2007).
  • Friso S , ChoiSW, GirelliD et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl Acad. Sci. USA 99 , 5606–5611 (2002).
  • Veena SR , KrishnaveniGV, SrinivasanK et al. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10-year-old children in south India. J. Nutr. 140 , 1014–1022 (2010).
  • Roth C , MagnusP, SchjolbergS et al. Folic acid supplements in pregnancy and severe language delay in children. JAMA 306 , 1566–1573 (2011).
  • Abdolmaleky HM , ThiagalingamS. Can the schizophrenia epigenome provide clues for the molecular basis of pathogenesis? Epigenomics3 , 679–683 (2011).
  • Grayson DR . Schizophrenia and the epigenetic hypothesis. Epigenomics2 , 341–344 (2010).
  • Roth TL , LubinFD, SodhiM, KleinmanJE. Epigenetic mechanisms in schizophrenia. Biochim. Biophys. Acta1790 , 869–877 (2009).
  • Abdolmaleky HM , YaqubiS, PapageorgisP et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr. Res. 129 , 183–190 (2011).
  • Abdolmaleky HM , ChengKH, FaraoneSV et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet. 15 , 3132–3145 (2006).
  • Iwamoto K , BundoM, YamadaK et al. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J. Neurosci. 25 , 5376–5381 (2005).
  • Grayson DR , JiaX, ChenY et al. Reelin promoter hypermethylation in schizophrenia. Proc. Natl Acad. Sci. USA 102 , 9341–9346 (2005).
  • Mill J , TangT, KaminskyZ et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 82 , 696–711 (2008).
  • Grayson DR , ChenY, CostaE et al. The human reelin gene: transcription factors (+), repressors (-) and the methylation switch (+/-) in schizophrenia. Pharmacol. Ther. 111 , 272–286 (2006).
  • Impagnatiello F , GuidottiAR, PesoldC et al. A decrease of Reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl Acad. Sci. USA 95 , 15718–15723 (1998).
  • Guidotti A , AutaJ, DavisJM et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57 , 1061–1069 (2000).
  • Fatemi SH , EarleJA, McMenomyT. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry5 , 654–663, 571 (2000).
  • Lipska BK , PetersT, HydeTM et al. Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum. Mol. Genet. 15 , 1245–1258 (2006).
  • Eastwood SL , HarrisonPJ. Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry8 , 769, 821–731 (2003).
  • Torrey EF , BarciBM, WebsterMJ, BartkoJJ, Meador-WoodruffJH, KnableMB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol. Psychiatry57 , 252–260 (2005).
  • Eastwood SL , HarrisonPJ. Cellular basis of reduced cortical reelin expression in schizophrenia. Am. J. Psychiatry163 , 540–542 (2006).
  • Tost H , LipskaBK, VakkalankaR et al. No effect of a common allelic variant in the reelin gene on intermediate phenotype measures of brain structure, brain function, and gene expression. Biol. Psychiatry 68 , 105–107 (2010).
  • Ovadia G , ShifmanS. The genetic variation of RELN expression in schizophrenia and bipolar disorder. PLoS ONE6 , e19955 (2011).
  • Chen Y , SharmaRP, CostaRH, CostaE, GraysonDR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res.30 , 2930–2939 (2002).
  • Kundakovic M , ChenY, CostaE, GraysonDR. DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol. Pharmacol.71 , 644–653 (2007).
  • Abdolmaleky HM , ChengKH, RussoA et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 134B , 60–66 (2005).
  • Tochigi M , IwamotoK, BundoM et al. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol. Psychiatry 63 , 530–533 (2008).
  • Ruzicka WB , ZhubiA, VeldicM, GraysonDR, CostaE, GuidottiA. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol. Psychiatry12 , 385–397 (2007).
  • Veldic M , CarunchoHJ, LiuWS et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc. Natl Acad. Sci. 101 , 348–353 (2004).
  • Costa E , ChenY, DongE et al. GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability. Expert Rev. Neurother. 9 , 87–98 (2008).
  • Konycheva G , DziadekMA, FergusonLR et al. Dietary methyl donor deficiency during pregnancy in rats shapes learning and anxiety in offspring. Nutr. Res. 31 , 790–804 (2011).
  • Dempster EL , PidsleyR, SchalkwykLC et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20 , 4786–4796 (2011).
  • Carrard A , SalzmannA, MalafosseA, KaregeF. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J. Affect Disord.132 , 450–453 (2011).
  • Chen Y , ZhangJ, ZhangL, ShenY, XuQ. Effects of MAOA promoter methylation on susceptibility to paranoid schizophrenia. Hum. Genet. (2011).
  • Melas PA , RogdakiM, ÖsbyU, SchallingM, LavebrattC, EkströmTJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J. doi:10.1096/fj.11-202069 (2012) (Epub ahead of print).
  • Park LK , FrisoS, ChoiSW. Nutritional influences on epigenetics and age-related disease. Proc. Nutr. Soc.71 , 75–83 (2012).
  • MRC vitamin study research group. Prevention of neural tube defects: results of the medical research council vitamin study. MRC vitamin study research group. Lancet338 , 131–137 (1991).
  • Czeizel AE , DudásI. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med.327 , 1832–1835 (1992).
  • Berry RJ , LiZ, EricksonJD et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative project for neural tube defect prevention. N. Engl. J. Med. 341 , 1485–1490 (1999).
  • Hendel J , DamM, GramL, WinkelP, JorgensenI. The effects of carbamazepine and valproate on folate metabolism in man. Acta Neurol. Scand.69 , 226–231 (1984).
  • Úbeda N , Alonso-AperteE, Varela-MoreirasG. Acute valproate administration impairs methionine metabolism in rats. J. Nutr.132 , 2737–2742 (2002).
  • Dalman C , AllebeckP, CullbergJ, GrunewaldC, KosterM. Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Arch. Gen. Psychiatry56 , 234–240 (1999).
  • Waddington JL , BrownAS, LaneA et al. Congenital anomalies and early functional impairments in a prospective birth cohort: risk of schizophrenia-spectrum disorder in adulthood. Br. J. Psychiatry 192 , 264–267 (2008).
  • Zammit S , LewisS, GunnellD, Davey Smith G. Schizophrenia and neural tube defects: comparisons from an epidemiological perspective. Schizophr. Bull.33 , 853–858 (2007).
  • Samren EB , van Duijn CM, Koch S et al. Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy. Epilepsia38 , 981–990 (1997).
  • Meador KJ , BakerGA, BrowningN et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N. Engl. J. Med. 360 , 1597–1605 (2009).
  • Jones P , RodgersB, MurrayR, MarmotM. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet344 , 1398–1402 (1994).
  • Gunnell D , HarrisonG, RasmussenF, FouskakisD, TyneliusP. Associations between premorbid intellectual performance, early-life exposures and early-onset schizophrenia. Cohort study. Br. J. Psychiatry181 , 298–305 (2002).
  • Cannon TD , RossoIM, HollisterJM, BeardenCE, SanchezLE, HadleyT. A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophr. Bull.26 , 351–366 (2000).
  • Malmberg A , LewisG, DavidA, AllebeckP. Premorbid adjustment and personality in people with schizophrenia. Br. J. Psychiatry172 , 308–313; discussion 314–305 (1998).
  • Cannon M , CaspiA, MoffittTE et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch. Gen. Psychiatry 59 , 449–456 (2002).
  • Isohanni M , MiettunenJ, MakiP et al. Risk factors for schizophrenia. Follow-up data from the Northern Finland 1966 birth cohort study. World Psychiatry 5 , 168–171 (2006).
  • Sorensen HJ , MortensenEL, SchiffmanJ, ReinischJM, MaedaJ, MednickSA. Early developmental milestones and risk of schizophrenia: a 45-year follow-up of the Copenhagen perinatal cohort. Schizophr. Res.118 , 41–47 (2010).
  • Schmidt RJ , HansenRL, HartialaJ et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology 22 , 476–485 (2011).
  • Rasalam AD , HaileyH, WilliamsJHG et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev. Med. Child Neurol. 47 , 551–555 (2005).
  • Asher O . Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod. Toxicol.28 , 1–10 (2009).
  • Magnus P , IrgensLM, HaugK et al. Cohort profile: the Norwegian mother and child cohort study (MoBa). Int. J. Epidemiol. 35 , 1146–1150 (2006).
  • Glaser B , AdesAE, LewisS et al. Perinatal folate-related exposures and risk of psychotic symptoms in the ALSPAC birth cohort. Schizophr. Res. 120 , 177–183 (2010).
  • Madrigano J , BaccarelliA, MittlemanMA et al. Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics doi:10.4161/epi.7.1.18749 (2012) (Epub ahead of print).
  • Fraga MF , BallestarE, PazMF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102 , 10604–10609 (2005).
  • McKay JA , WongYK, ReltonCL, FordD, MathersJC. Maternal folate supply and sex influence gene-specific DNA methylation in the fetal gut. Mol. Nutr. Food Res.55 , 1717–1723 (2011).
  • Bell JT , PaiAA, PickrellJK et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 12 , R10 (2011).
  • Davey Smith G . Use of genetic markers and gene-diet interactions for interrogating population-level causal influences of diet on health. Genes Nutr.6 , 27–43 (2011).
  • Davey Smith G , EbrahimS. ‘Mendelian randomization‘: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol.32 , 1–22 (2003).
  • Frosst P , BlomHJ, MilosR et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10 , 111–113 (1995).
  • Relton CL , Davey Smith G. Two step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int. J. Epidemiol.41 , 161–176 (2012).
  • Relton CL , Davey Smith G. Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med.7 , e1000356 (2010).
  • Timpson NJ , WadeKH, Davey Smith G. Mendelian randomization: application to cardiovascular disease. Curr. Hypertens. Rep.14 , 29–37 (2012).
  • Groom A , PotterC, SwanDC et al. Postnatal growth and DNA methylation are associated with differential gene expression of the TACSTD2 gene and childhood fat mass. Diabetes 61 , 391–400 (2012).
  • Petronis A . Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature465 , 721–727 (2010).
  • Donovan SJ , SusserE. Commentary: advent of sibling designs. Int. J. Epidemiol.40 , 345–349 (2011).
  • Susser E , EideMG, BeggM. Invited commentary: the use of sibship studies to detect familial confounding. Am. J. Epidemiol.172 , 537–539 (2010).
  • Davey Smith G . Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? Basic Clin. Pharmacol. Toxicol.102 , 245–256 (2008).
  • Brion MJ , LawlorDA, MatijasevichA et al. What are the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from comparing high-income with middle-income cohorts. Int. J. Epidemiol. 40 , 670–680 (2011).
  • Relton CL , Davey Smith G. Is epidemiology ready for epigenetics? Int. J. Epidemiol.41 , 5–9 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.