594
Views
1
CrossRef citations to date
0
Altmetric
Review

Epigenetic Mechanisms in Gastric Cancer

, , , , &
Pages 279-294 | Published online: 12 Jun 2012

References

  • Jemal A , BrayF, CenterMM, FerlayJ, WardE, FormanD. Global cancer statistics. CA Cancer J. Clin.61(2) , 69–90 (2011).
  • Saif MW , MakriliaN, ZalonisA, MerikasM, SyrigosK. Gastric cancer in the elderly: an overview. Eur. J. Surg. Oncol.36(8) , 709–717 (2010).
  • Parkin DM , WhelanSL, FerlayJ, TeppoL, ThomasDB. Cancer Incidence in Five Continents. International Agency for Research on Cancer, Lyon, France (2002).
  • Crew KD , NeugutAI. Epidemiology of gastric cancer. World J. Gastroenterol.12(3) , 354–362 (2006).
  • Laurén P . The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta. Pathol. Microbiol. Scand.64 , 31–49 (1965).
  • Yamashita S , WakazonoK, SugimuraT, UshijimaT. Profiling and selection of genes differentially expressed in the pylorus of rat strains with different proliferative responses and stomach cancer susceptibility. Carcinogenesis23(6) , 923–928 (2002).
  • Inca: Estimativas 2010: Incidência de Câncer no Brasil. Instituto Nacional de Câncer, Rio de Janeiro, Brazil (2010).
  • Shi Y , ZhouY. The role of surgery in the treatment of gastric cancer. J. Surg. Oncol.101(8) , 687–692 (2010).
  • Assumpção PP , BurbanoRR. Genética e câncer gástrico. In: Atualização em Câncer-Gástrico. Linhares E, Laércio L, Takeshi S (Eds). Tecmed, São Paulo, Brazil, 95–106 (2005).
  • Boveri T , BoveriM. The Origin of Malignant Tumors. Williams and Wilkins, MD, USA (1929).
  • Khayat AS , GuimaraesAC, CalcagnoDQ et al. Interrelationship between TP53 gene deletion, protein expression and chromosome 17 aneusomy in gastric adenocarcinoma. BMC Gastroenterol. 9 , 55 (2009).
  • Calcagno DQ , LealMF, TakenSS et al. Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. Anticancer Res. 25(6B) , 4069–4074 (2005).
  • Burbano RR , AssumpcaoPP, LealMF et al. C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res. 26(4B) , 2909–2914 (2006).
  • Assumpcao PP , IshakG, ChenES et al. Numerical aberrations of chromosome 8 detected by conventional cytogenetics and fluorescence in situ hybridization in individuals from northern Brazil with gastric adenocarcinoma. Cancer Genet. Cytogenet. 169(1) , 45–49 (2006).
  • Calcagno DQ , GuimaraesAC, LealMF et al. MYC insertions in diffuse-type gastric adenocarcinoma. Anticancer Res. 29(7) , 2479–2483 (2009).
  • Borges Bdo N , BurbanoRR, HaradaML. Survivin -31C/G polymorphism and gastric cancer risk in a Brazilian population. Clin. Exp. Med.11(3) , 189–193 (2011).
  • Lima EM , AraujoJJ, HaradaML, AssumpcaoPP, BurbanoRR, CasartelliC. Molecular study of the tumour suppressor gene PTEN in gastric adenocarcinoma in Brazil. Clin. Exp. Med.5(3) , 129–132 (2005).
  • Khayat AS , Lobo Gatti L, Moura Lima E et al. Polymorphisms of the TP53 codon 72 and WRN codon 1367 in individuals from northern Brazil with gastric adenocarcinoma. Clin. Exp. Med.5(4) , 161–168 (2005).
  • Feinberg AP , OhlssonR, HenikoffS. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet.7(1) , 21–33 (2006).
  • Waddington CH . The epigenotype. Endeavour1 , 18–20 (1942).
  • Sharma S , KellyTK, JonesPA. Epigenetics in cancer. Carcinogenesis31(1) , 27–36 (2010).
  • Deangelis JT , FarringtonWJ, TollefsbolTO. An overview of epigenetic assays. Mol. Biotechnol.38(2) , 179–183 (2008).
  • Portela A , EstellerM. Epigenetic modifications and human disease. Nat. Biotechnol.28(10) , 1057–1068 (2010).
  • Deaton AM , BirdA. CpG islands and the regulation of transcription. Genes Dev.25(10) , 1010–1022 (2011).
  • Taby R , IssaJP. Cancer epigenetics. CA Cancer J. Clin.60(6) , 376–392 (2010).
  • Fan H , LiuD, QiuX et al. A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med. 8 , 12 (2010).
  • Hu J , FanH, LiuD, ZhangS, ZhangF, XuH. DNMT3B promoter polymorphism and risk of gastric cancer. Dig. Dis. Sci.55(4) , 1011–1016 (2010).
  • Yang J , WeiX, WuQ et al. Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol. Med. Report 4(6) , 1139–1143 (2011).
  • Mutze K , LangerR, BeckerK et al. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann. Surg. Oncol. 17(12) , 3336–3343 (2010).
  • Kanai Y , UshijimaS, KondoY, NakanishiY, HirohashiS. DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int. J. Cancer91(2) , 205–212 (2001).
  • Yan J , ZhangM, ZhangJ, ChenX, ZhangX. Helicobacter pylori infection promotes methylation of WWOX gene in human gastric cancer. Biochem. Biophys. Res. Commun.408(1) , 99–102 (2011).
  • Oue N , KuraokaK, KuniyasuH et al. DNA methylation status of hMLH1, p16(INK4a), and CDH1 is not associated with mRNA expression levels of DNA methyltransferase and DNA demethylase in gastric carcinomas. Oncol. Rep. 8(5) , 1085–1089 (2001).
  • Selaru FM , DavidS, MeltzerSJ, HamiltonJP. Epigenetic events in gastrointestinal cancer. Am. J. Gastroenterol.104(8) , 1910–1912 (2009).
  • Baylin SB , JonesPA. A decade of exploring the cancer epigenome – biological and translational implications. Nat. Rev. Cancer11(10) , 726–734 (2011).
  • Ding SZ , GoldbergJB, HatakeyamaM. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol.6(5) , 851–862 (2010).
  • Calcagno DQ , GigekCO, ChenES, BurbanoRR, SmithMAC. DNA and histone methylation in gastric carcinogenesis. World J. Gastroenterol. (2012) (In Press).
  • Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene21(35) , 5427–5440 (2002).
  • Hu XT , HeC. Recent progress in the study of methylated tumor suppressor genes in gastric cancer. Chin. J. Cancer doi:10.5732/cjc.011.10175 (2011) (Epub ahead of print).
  • Shin CM , KimN, ParkJH et al. Prediction of the risk for gastric cancer using candidate methylation markers in the non-neoplastic gastric mucosae. J. Pathol. 226(4) , 654–665 (2012).
  • Ando T , YoshidaT, EnomotoS et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int. J. Cancer 124(10) , 2367–2374 (2009).
  • Gigek CO , LealMF, LisboaLC et al. Insulin-like growth factor binding protein-3 gene methylation and protein expression in gastric adenocarcinoma. Growth Horm. IGF Res. 20(3) , 234–238 (2010).
  • Leal MF , LimaEM, SilvaPN et al. Promoter hypermethylation of CDH1, FHIT, TAP and PLAGL1 in gastric adenocarcinoma in individuals from northern Brazil. World J. Gastroenterol. 13(18) , 2568–2574 (2007).
  • Stec-Michalska K , PeczekL, MichalskiB, Wisniewska-JarosinskaM, KrakowiakA, NawrotB. Helicobacter pylori infection and family history of gastric cancer decrease expression of FHIT tumor suppressor gene in gastric mucosa of dyspeptic patients. Helicobacter14(5) , 126–134 (2009).
  • Borges Bdo N , Santos Eda S, Bastos CE et al. Promoter polymorphisms and methylation of E-cadherin (CDH1) and KIT in gastric cancer patients from northern Brazil. Anticancer Res.30(6) , 2225–2233 (2010).
  • Irizarry RA , Ladd-AcostaC, WenB et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2) , 178–186 (2009).
  • Illingworth RS , Gruenewald-SchneiderU, WebbS et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 6(9) , pii: e1001134 (2010).
  • Gigek CO , LealMF, SilvaPN et al. hTERT methylation and expression in gastric cancer. Biomarkers 14(8) , 630–636 (2009).
  • Lima EM , LealMF, BurbanoRR et al. Methylation status of ANAPC1, CDKN2A and TP53 promoter genes in individuals with gastric cancer. Braz. J. Med. Biol. Res. 41(6) , 539–543 (2008).
  • Alves MK , LimaVP, FerrasiAC, RodriguesMA, De Moura Campos Pardini MI, Rabenhorst SH. CDKN2A promoter methylation is related to the tumor location and histological subtype and associated with Helicobacter pylori flaA(+) strains in gastric adenocarcinomas. APMIS118(4) , 297–307 (2010).
  • Cao Z , YoonJH, NamSW, LeeJY, ParkWS. PDCD4 expression inversely correlated with miR-21 levels in gastric cancers. J. Cancer Res. Clin. Oncol.138(4) , 611–619 (2012).
  • Zheng Y , ChenL, LiJ et al. Hypermethylated DNA as potential biomarkers for gastric cancer diagnosis. Clin. Biochem. 44(17–18) , 1405–1411 (2011).
  • Jee CD , KimMA, JungEJ, KimJ, KimWH. Identification of genes epigenetically silenced by CpG methylation in human gastric carcinoma. Eur. J. Cancer45(7) , 1282–1293 (2009).
  • Dong W , WangL, ChenX, SunP, WuY. Upregulation and CpG island hypomethylation of the TRF2 gene in human gastric cancer. Dig. Dis. Sci.55(4) , 997–1003 (2010).
  • Wang X , FanJ, LiuD, FuS, IngvarssonS, ChenH. Spreading of Alu methylation to the promoter of the MLH1 gene in gastrointestinal cancer. PLoS ONE6(10) , e25913 (2011).
  • Abbaszadegan MR , MoavenO, SimaHR et al. p16 promoter hypermethylation: a useful serum marker for early detection of gastric cancer. World J. Gastroenterol.14(13) , 2055–2060 (2008).
  • Ikoma H , IchikawaD, DaitoI et al. Clinical application of methylation specific-polymerase chain reaction in serum of patients with gastric cancer. Hepatogastroenterology 54(75) , 946–950 (2007).
  • Wang YC , YuZH, LiuC et al. Detection of RASSF1A promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World J. Gastroenterol. 14(19) , 3074–3080 (2008).
  • Chen L , SuL, LiJ et al. Hypermethylated FAM5C and MYLK in serum as diagnosis and pre-warning markers for gastric cancer. Dis. Markers 32(3) , 195–202 (2012).
  • Hibi K , GotoT, ShirahataA et al. Detection of TFPI2 methylation in the serum of gastric cancer patients. Anticancer Res. 31(11) , 3835–3838 (2011).
  • Bernal C , AguayoF, VillarroelC et al. Reprimo as a potential biomarker for early detection in gastric cancer. Clin. Cancer Res. 14(19) , 6264–6269 (2008).
  • Zheng Y , ZhangY, HuangX, ChenL. Analysis of the RUNX3 gene methylation in serum DNA from esophagus squamous cell carcinoma, gastric and colorectal adenocarcinoma patients. Hepatogastroenterology58(112) , 2007–2011 (2011).
  • Collas P . The state-of-the-art of chromatin immunoprecipitation. Methods Mol. Biol.567 , 1–25 (2009).
  • Kouzarides T , BergerS. Chromatin modifications and their mechanism of action. In: Epigenetics. Allis CD, Jenuwein T, Reinberg D (Eds). Cold Spring Harbor Laboratory Press, NY, USA 191–209 (2009).
  • Kanwal R , GuptaS. Epigenetic modifications in cancer. Clin. Genet.81(4) , 303–311 (2012).
  • Liu C , XuD. Inhibition of histone deacetylases. In: Epigenetics Protocol. Tollefsbol TO (Ed.). Human Press Inc., NJ, USA, 87–97 (2010).
  • Ellis L , AtadjaPW, JohnstoneRW. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther.8(6) , 1409–1420 (2009).
  • Glozak MA , SenguptaN, ZhangX, SetoE. Acetylation and deacetylation of non-histone proteins. Gene363 , 15–23 (2005).
  • Davis PK , BrackmannRK. Chromatin remodeling and cancer. Cancer Biol. Ther.2(1) , 22–29 (2003).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4) , 693–705 (2007).
  • Ferrari R , PellegriniM, HorwitzGA, XieW, BerkAJ, KurdistaniSK. Epigenetic reprogramming by adenovirus e1a. Science321(5892) , 1086–1088 (2008).
  • Horwitz GA , ZhangK, McbrianMA, GrunsteinM, KurdistaniSK, BerkAJ. Adenovirus small e1a alters global patterns of histone modification. Science321(5892) , 1084–1085 (2008).
  • Koshiishi N , ChongJM, FukasawaT et al. p300 gene alterations in intestinal and diffuse types of gastric carcinoma. Gastric Cancer7(2) , 85–90 (2004).
  • Ying MZ , WangJJ, LiDW et al. The p300/CBP associated factor: is frequently downregulated in intestinal-type gastric carcinoma and constitutes a biomarker for clinical outcome. Cancer Biol. Ther. 9(4) , 312–320 (2010).
  • Glozak MA , SetoE. Histone deacetylases and cancer. Oncogene26(37) , 5420–5432 (2007).
  • Mohamed MA , GreifPA, DiamondJ et al. Epigenetic events, remodelling enzymes and their relationship to chromatin organization in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. BJU Int. 99(4) , 908–915 (2007).
  • Song J , NohJH, LeeJH et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113(4) , 264–268 (2005).
  • Liu T , KuljacaS, TeeA, MarshallGM. Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat. Rev.32(3) , 157–165 (2006).
  • Thiagalingam S , ChengKH, LeeHJ, MinevaN, ThiagalingamA, PonteJF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. NY Acad. Sci.983 , 84–100 (2003).
  • Wu ZQ , ZhangR, ChaoC, ZhangJF, ZhangYQ. Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell. Chin. Med. J. (Engl.)120(23) , 2112–2118 (2007).
  • Zou XM , LiYL, WangH et al. Gastric cancer cell lines induced by trichostatin A. World J. Gastroenterol. 14(30) , 4810–4815 (2008).
  • Ye Y , XiaoY, WangW et al. Inhibition of expression of the chromatin remodeling gene, SNF2L, selectively leads to DNA damage, growth inhibition, and cancer cell death. Mol. Cancer Res. 7(12) , 1984–1999 (2009).
  • Gigek CO , LisboaLC, LealMF et al. SMARCA5 methylation and expression in gastric cancer. Cancer Invest. 29(2) , 162–166 (2011).
  • Lee JH , SongMY, SongEK et al. Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-κB signaling pathway. Diabetes 58(2) , 344–351 (2009).
  • Saunders LR , VerdinE. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene26(37) , 5489–5504 (2007).
  • Aihara T , MiyoshiY, KoyamaK et al. Cloning and mapping of SMARCA5 encoding hSNF2H, a novel human homologue of Drosophila ISWI. Cytogenetics Cell Genetics 81(3–4) , 191–193 (1998).
  • Cha EJ , NohSJ, KwonKS et al. Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin. Cancer Res. 15(13) , 4453–4459 (2009).
  • Fraga MF , BallestarE, Villar-GareaA et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37(4) , 391–400 (2005).
  • Mitani Y , OueN, HamaiY et al. Histone H3 acetylation is associated with reduced p21 (WAF1/CIP1) expression by gastric carcinoma. J. Pathol. 205(1) , 65–73 (2005).
  • Song IS , HaGH, KimJM et al. Human ZNF312b oncogene is regulated by Sp1 binding to its promoter region through DNA demethylation and histone acetylation in gastric cancer. Int. J. Cancer 129(9) , 2124–2133 (2011).
  • Wang XH , ZhangLH, ZhongXY et al. S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer. Am. J. Pathol. 177(2) , 586–597 (2010).
  • Ono S , OueN, KuniyasuH et al. Acetylated histone H4 is reduced in human gastric adenomas and carcinomas. J. Exp. Clin. Cancer Res. 21(3) , 377–382 (2002).
  • Yasui W , OueN, OnoS, MitaniY, ItoR, NakayamaH. Histone acetylation and gastrointestinal carcinogenesis. Ann. NY Acad. Sci.983 , 220–231 (2003).
  • Shilatifard A . Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem.75 , 243–269 (2006).
  • Richards EJ , ElginSC. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell108(4) , 489–500 (2002).
  • Lan F , ShiY. Epigenetic regulation: methylation of histone and non-histone proteins. Sci. China52(4) , 311–322 (2009).
  • Zhang BG , LiJF, YuBQ, ZhuZG, LiuBY, YanM. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol. Rep.27(4) , 1019–1026 (2012).
  • Park YS , JinMY, KimYJ, YookJH, KimBS, JangSJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol.15(7) , 1968–1976 (2008).
  • Kwon MJ , KimSH, JeongHM et al. Claudin-4 overexpression is associated with epigenetic depression in gastric carcinoma. Lab. Invest. 91(11) , 1652–1667 (2011).
  • Kwon OH , ParkJL, KimM et al. Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem. Biophys. Res. Commun. 406(4) , 539–545 (2011).
  • Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8(4) , 286–298 (2007).
  • Varambally S , CaoQ, ManiRS et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908) , 1695–1699 (2008).
  • Fujii S , OchiaiA. Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Sci.99(4) , 738–746 (2008).
  • Meng CF , ZhuXJ, PengG, DaiDQ. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J. Gastroenterol.13(46) , 6166–6171 (2007).
  • Meng CF , ZhuXJ, PengG, DaiDQ. Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells. Oncol. Reports22(5) , 1221–1227 (2009).
  • Takahashi H , MuraiY, TsuneyamaK et al. Overexpression of phosphorylated histone H3 is an indicator of poor prognosis in gastric adenocarcinoma patients. Appl. Immunohistochem. Mol. Morphol. 14(3) , 296–302 (2006).
  • Henry KW , WyceA, LoWS et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17(21) , 2648–2663 (2003).
  • Shiio Y , EisenmanRN. Histone sumoylation is associated with transcriptional repression. Proc. Natl Acad. Sci. USA100(23) , 13225–13230 (2003).
  • Ho L , CrabtreeGR. Chromatin remodelling during development. Nature463(7280) , 474–484 (2010).
  • Tsukiyama T , DanielC, TamkunJ, WuC. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell83(6) , 1021–1026 (1995).
  • Varga-Weisz PD , WilmM, BonteE, DumasK, MannM, BeckerPB. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature388(6642) , 598–602 (1997).
  • Wilson BG , RobertsCW. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer11(7) , 481–492 (2011).
  • Jones S , LiM, ParsonsDW et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum. Mutat. 33(1) , 100–103 (2012).
  • Wang K , KanJ, Yuen St et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet.43(12) , 1219–1223 (2011).
  • Sentani K , OueN, KondoH et al. Increased expression but not genetic alteration of BRG1, a component of the SWI/SNF complex, is associated with the advanced stage of human gastric carcinomas. Pathobiology 69(6) , 315–320 (2001).
  • Yamamichi N , InadaK, IchinoseM et al. Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res. 67(22) , 10727–10735 (2007).
  • Esteller M . Non-coding RNAs in human disease. Nat. Rev. Genet.12(12) , 861–874 (2011).
  • Rotkrua P , AkiyamaY, HashimotoY, OtsuboT, YuasaY. MiR-9 downregulates CDX2 expression in gastric cancer cells. Int. J. Cancer129(11) , 2611–2620 (2011).
  • Song B , JuJ. Impact of miRNAs in gastrointestinal cancer diagnosis and prognosis. Expert Rev. Mol. Med.12 , E33 (2010).
  • Liu H , ZhuL, LiuB et al. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 316(2) , 196–203 (2012).
  • Liu R , ZhangC, HuZ et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur. J. Cancer 47(5) , 784–791 (2011).
  • Tsujiura M , IchikawaD, KomatsuS et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 102(7) , 1174–1179 (2010).
  • Li X , LuoF, LiQ et al. Identification of new aberrantly expressed miRNAs in intestinal-type gastric cancer and its clinical significance. Oncol. Rep. 26(6) , 1431–1439 (2011).
  • Nakagawa M , OdaY, EguchiT et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep. 18(4) , 769–774 (2007).
  • Feng AN , ZhangLH, FanXS et al. Expression of SIRT1 in gastric cardiac cancer and its clinicopathologic significance. Int. J. Surg. Pathol. 19(6) , 743–750 (2011).
  • Sakuraba K , YokomizoK, ShirahataA et al. TIP60 as a potential marker for the malignancy of gastric cancer. Anticancer Res. 31(1) , 77–79 (2011).
  • Iizuka M , TakahashiY, MizzenCA et al. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene 436(1–2) , 108–114 (2009).
  • Guo X , JingC, LiL et al. Down-regulation of VEZT gene expression in human gastric cancer involves promoter methylation and miR-43c. Biochem. Biophys. Res. Commun. 404(2) , 622–627 (2011).
  • Chiang Y , ZhouX, WangZ et al.: Expression levels of microRNA-192 and -215 in gastric carcinoma.Pathol. Oncol. Res. (2011).
  • Furuta M , KozakiKI, TanakaS, AriiS, ImotoI, InazawaJ. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis31(5) , 766–776 (2010).
  • Chiang Y , SongY, WangZ et al. Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J. Gastrointest. Surg. 15(1) , 63–70 (2011).
  • Sun T , WangC, XingJ, WuD. miR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur. J. Cancer47(17) , 2552–2559 (2011).
  • Xu L , WangF, XuXF et al. Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells. Med. Oncol. 28(Suppl. 1) , S189–S196 (2011).
  • Wang HJ , RuanHJ, HeXJ et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur. J. Cancer 46(12) , 2295–2303 (2010).
  • Zhu A , XiaJ, ZuoJ et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med. Oncol. doi:10.1007/s12032-011-0134-3 (2011) (Epub ahead of print).
  • Song YX , YueZY, WangZN et al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol. Cancer 10 , 1 (2011).
  • Tsai KW , WuCW, HuLY et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int. J. Cancer 129(11) , 2600–2610 (2011).
  • Bou Kheir T , Futoma-KazmierczakE, JacobsenA et al. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer 10 , 29 (2011).
  • Ahn SM , ChaJY, KimJ et al. Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene doi:10.1038/onc.2011.484 (2011) (Epub ahead of print).
  • Kong WQ , BaiR, LiuT et al. MicroRNA-182 targets cyclic adenosine monophosphate responsive element binding protein 1 (CREB1) and suppresses cell growth in human gastric adenocarcinoma. FEBS J. 279(7) , 1252–1260 (2012).
  • Kong D , PiaoYS, YamashitaS et al. Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene (2011).
  • Cui Y , SuWY, XingJ et al. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS ONE 6(10) , e25872 (2011).
  • Hashiguchi Y , NishidaN, MimoriK et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int. J. Oncol. 40(5) , 1477–1482 (2012).
  • Nishida N , MimoriK, FabbriM et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin. Cancer Res. 17(9) , 2725–2733 (2011).
  • Tsukamoto Y , NakadaC, NoguchiT et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14–3–3zeta. Cancer Res. 70(6) , 2339–2349 (2010).
  • Ohshima K , InoueK, FujiwaraA et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5(10) , e13247 (2011).
  • Shin VY , JinH, NgEK et al. NF-κB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis 32(2) , 240–245 (2010).
  • Chan SH , WuCW, LiAF, ChiCW, LinWC. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res.28(2A) , 907–911 (2008).
  • Jin Z , SelaruFM, ChengY et al. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 30(13) , 1577–1585 (2011).
  • Otsubo T , AkiyamaY, HashimotoY, ShimadaS, GotoK, YuasaY. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS ONE6(1) , e16617 (2011).
  • Xiao B , ZhuED, LiN et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol. Rep. 27(2) , 559–566 (2012).
  • Brenner B , HoshenMB, PurimO et al. MicroRNAs as a potential prognostic factor in gastric cancer. World J. Gastroenterol. 17(35) , 3976–3985 (2011).

▪ Website

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM.GLOBOCAN 2008 v1.2, Cancer incidence and mortality worldwide: IARC Cancer Base No. 10. International Agency for Research on Cancer, Lyon, France (2010). http://globocan.iarc.fr/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.