211
Views
0
CrossRef citations to date
0
Altmetric
Review

Single-Molecule, Genome-Scale Analyses of DNA Modifications: Exposing the Epigenome with Next-Generation Technologies

&
Pages 403-414 | Published online: 24 Aug 2012

References

  • Cheng X . Structure and function of DNA methyltransferases. Annu. Rev. Biophys. Biomol. Struct.24 , 293–318 (1995).
  • Collier J . Epigenetic regulation of the bacterial cell cycle. Curr. Opin. Microbiol.12(6) , 722–729 (2009).
  • Giacomodonato MN , SarnackiSH, LlanaMN, CerquettiMC. Dam and its role in pathogenicity of Salmonella enterica. J. Infect. Dev. Ctries.3(7) , 484–490 (2009).
  • Marinus MG , CasadesusJ. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev.33(3) , 488–503 (2009).
  • Bird A . DNA methylation patterns and epigenetic memory. Genes Dev.16(1) , 6–21 (2002).
  • Ratel D , RavanatJL, BergerF, WionD. N6-methyladenine: the other methylated base of DNA. Bioessays28(3) , 309–315 (2006).
  • Borst P , SabatiniR, BaseJ. discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol.62 , 235–251 (2008).
  • Ekanayake DK , MinningT, WeatherlyB et al. Epigenetic regulation of transcription and virulence in trypanosoma cruzi by O-linked thymine glucosylation of DNA. Mol. Cell. Biol. 31(8) , 1690–1700 (2011).
  • Neuberger MS , HarrisRS, Di Noia J, Petersen-Mahrt SK. Immunity through DNA deamination. Trends Biochem. Sci.28(6) , 305–312 (2003).
  • Wang L , ChenS, VerginKL et al. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc. Natl Acad. Sci. USA 108(7) , 2963–2968 (2011).
  • Wang L , ChenS, XuT et al. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 3(11) , 709–710 (2007).
  • Vengrova S , DalgaardJZ. The wild-type schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides. EMBO Rep.7(1) , 59–65 (2006).
  • Ito S , ShenL, DaiQ et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047) , 1300–1303 (2011).
  • Kriaucionis S , HeintzN. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324(5929) , 929–930 (2009).
  • Tahiliani M , KohKP, ShenY et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929) , 930–935 (2009).
  • Wu H , ZhangY. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev.25(23) , 2436–2452 (2011).
  • Bernstein BE , MeissnerA, LanderES. The mammalian epigenome. Cell128(4) , 669–681 (2007).
  • Callinan PA , FeinbergAP. The emerging science of epigenomics. Hum. Mol. Genet.15(Spec. No 1) , R95–R101 (2006).
  • Novik KL , NimmrichI, GencB et al. Epigenomics: genome-wide study of methylation phenomena. Curr. Issues Mol. Biol. 4(4) , 111–128 (2002).
  • Deaton AM , BirdA. CpG islands and the regulation of transcription. Genes Dev.25(10) , 1010–1022 (2011).
  • Baylin SB , JonesPA. A decade of exploring the cancer epigenome – biological and translational implications. Nat. Rev. Cancer11(10) , 726–734 (2011).
  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Iacobuzio-Donahue CA . Epigenetic changes in cancer. Annu. Rev. Pathol.4 , 229–249 (2009).
  • Ballestar E . Epigenetic alterations in autoimmune rheumatic diseases. Nat. Rev. Rheumatol.7(5) , 263–271 (2011).
  • Meda F , FolciM, BaccarelliA, SelmiC. The epigenetics of autoimmunity. Cell. Mol. Immunol.8(3) , 226–236 (2011).
  • Mehler MF . Epigenetics and the nervous system. Ann. Neurol.64(6) , 602–617 (2008).
  • Portela A , EstellerM. Epigenetic modifications and human disease. Nat. Biotechnol.28(10) , 1057–1068 (2010).
  • Bock C . Epigenetic biomarker development. Epigenomics1(1) , 99–110 (2009).
  • Ammerpohl O , Martín-SuberoJI, RichterJ, VaterI, SiebertR. Hunting for the 5th base: techniques for analyzing DNA methylation. Biochim. Biophys. Acta1790(9) , 847–862 (2009).
  • Beck S , RakyanVK. The methylome: approaches for global DNA methylation profiling. Trends Genet.24(5) , 231–237 (2008).
  • Bibikova M , FanJB. Genome-wide DNA methylation profiling. Wiley Interdiscip. Rev. Syst. Biol. Med.2(2) , 210–223 (2010).
  • Bock C , TomazouEM, BrinkmanAB et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28(10) , 1106–1114 (2010).
  • Fraga MF , EstellerM. DNA methylation: a profile of methods and applications. Biotechniques33(3) , 632, 634, 636–649 (2002).
  • Harrison A , Parle-McdermottA. DNA methylation: a timeline of methods and applications. Front. Genet.2 , 74 (2011).
  • Laird PW . Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet.11(3) , 191–203 (2010).
  • Shen L , WaterlandRA. Methods of DNA methylation analysis. Curr. Opin. Clin. Nutr. Metabolic Care10(5) , 576–581 (2007).
  • Zilberman D , HenikoffS. Genome-wide analysis of DNA methylation patterns. Development134(22) , 3959–3965 (2007).
  • Vischer E , ChargaffE. The separation and quantitative estimation of purines and pyrimidines in minute amounts. J. Biol. Chem.176(2) , 703–714 (1948).
  • Wyatt GR . Occurrence of 5-methylcytosine in nucleic acids. Nature166(4214) , 237–238 (1950).
  • Kuo KC , MccuneRA, GehrkeCW, MidgettR, EhrlichM. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res.8(20) , 4763–4776 (1980).
  • Fraga MF , RodriguezR, CañalMJ. Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis21(14) , 2990–2994 (2000).
  • Fraga MF , UriolE, Borja Diego L et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 2´-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis23(11) , 1677–1681 (2002).
  • Frommer M , McdonaldLE, MillarDS et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89(5) , 1827–1831 (1992).
  • Bird AP , SouthernEM. Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J. Mol. Biol.118(1) , 27–47 (1978).
  • Ballestar E , PazMF, ValleL et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 22(23) , 6335–6345 (2003).
  • Weber M , DaviesJJ, WittigD et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37(8) , 853–862 (2005).
  • Fouse SD , NagarajanRO, CostelloJF. Genome-scale DNA methylation analysis. Epigenomics2(1) , 105–117 (2010).
  • Robinson MD , StathamAL, SpeedTP, ClarkSJ. Protocol matters: which methylome are you actually studying? Epigenomics2(4) , 587–598 (2010).
  • Grunau C , ClarkSJ, RosenthalA. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res.29(13) , E65–E65 (2001).
  • Raizis AM , SchmittF, JostJP. A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Anal. Biochem.226(1) , 161–166 (1995).
  • Huang Y , PastorWA, ShenY, TahilianiM, LiuDR, RaoA. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PloS ONE5(1) , e8888 (2010).
  • Lander ES , LintonLM, BirrenB et al. Initial sequencing and analysis of the human genome. Nature 409(6822) , 860–921 (2001).
  • Venter JC , AdamsMD, MyersEW et al. The sequence of the human genome. Science 291(5507) , 1304–1351 (2001).
  • Jurka J , KapitonovVV, KohanyO, JurkaMV. Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genomics Hum. Genet.8 , 241–259 (2007).
  • Malone CD , HannonGJ. Small RNAs as guardians of the genome. Cell136(4) , 656–668 (2009).
  • Németh A , LängstG. Genome organization in and around the nucleolus. Trends Genet.27(4) , 149–156 (2011).
  • Pearson CE , EdamuraKN, ClearyJD. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet.6(10) , 729–742 (2005).
  • Peng JC , KarpenGH. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev.18(2) , 204–211 (2008).
  • Druker R , WhitelawE. Retrotransposon-derived elements in the mammalian genome: a potential source of disease. J. Inherit. Metab. Dis.27(3) , 319–330 (2004).
  • Wilson AS , PowerBE, MolloyPL. DNA hypomethylation and human diseases. Biochim. Biophys. Acta1775(1) , 138–162 (2007).
  • Choi SH , WorswickS, ByunHM et al. Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int. J. Cancer 125(3) , 723–729 (2009).
  • Lamprecht B , BoniferC, MathasS. Repeat-element driven activation of proto-oncogenes in human malignancies. Cell Cycle9(21) , 4276–4281 (2010).
  • Phokaew C , KowudtithamS, SubbalekhaK, ShuangshotiS, MutiranguraA. LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res.36(17) , 5704–5712 (2008).
  • Sharma S , KellyTK, JonesPA. Epigenetics in cancer. Carcinogenesis31(1) , 27–36 (2010).
  • Bollati V , GalimbertiD, PergoliL et al. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav. Immun. 25(6) , 1078–1083 (2011).
  • De Greef JC , LemmersRJLF, van Engelen BGM et al. Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum. Mutat.30(10) , 1449–1459 (2009).
  • Horard B , EymeryA, FourelG et al. Global analysis of DNA methylation and transcription of human repetitive sequences. Epigenetics 4(5) , 339–350 (2009).
  • Weisenberger DJ , CampanM, LongTI et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 33(21) , 6823–6836 (2005).
  • Yang AS , EstécioMRH, DoshiK, KondoY, TajaraEH, IssaJPJ. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res.32(3) , E38 (2004).
  • Feinberg AP . Genome-scale approaches to the epigenetics of common human disease. Virchows Arch.456(1) , 13–21 (2010).
  • Rakyan VK , DownTA, BaldingDJ, BeckS. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet.12(8) , 529–541 (2011).
  • Hansen KD , TimpW, BravoHC et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43(8) , 768–775 (2011).
  • Ballestar E , EstellerM. SnapShot: the human DNA methylome in health and disease. Cell135(6) , 1144–1144.E1 (2008).
  • Lister R , PelizzolaM, DowenRH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271) , 315–322 (2009).
  • Bibikova M , LinZ, ZhouL et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16(3) , 383–393 (2006).
  • Hodges E , SmithAD, KendallJ et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 19(9) , 1593–1605 (2009).
  • Eid J , FehrA, GrayJ et al. Real-time DNA sequencing from single polymerase molecules. Science 323(5910) , 133–138 (2009).
  • Song CX , ClarkTA, LuXY et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat. Methods 9(1) , 75–77 (2011).
  • Clark TA , MurrayIA, MorganRD et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 40(4) , E29 (2012).
  • Clark TA , SpittleKE, TurnerSW, KorlachJ. Direct detection and sequencing of damaged DNA bases. Genome Integr.2(1) , 10 (2011).
  • Flusberg BA , WebsterDR, LeeJH et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 1–19 (2010).
  • Levene MJ . Zero-mode waveguides for single-molecule analysis at high concentrations. Science299(5607) , 682–686 (2003).
  • Branton D , DeamerDW, MarzialiA et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10) , 1146–1153 (2008).
  • Schibel AE , AnN, JinQ, FlemingAM, BurrowsCJ, WhiteHS. Nanopore detection of 8-oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J. Am. Chem. Soc.132(51) , 17992–17995 (2010).
  • Wallace EVB , StoddartD, HeronAJ et al. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. (Camb.) 46(43) , 8195–8197 (2010).
  • Clarke J , WuHC, JayasingheL, PatelA, ReidS, BayleyH. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4(4) , 265–270 (2009).
  • Kasianowicz JJ , BrandinE, BrantonD, DeamerDW. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA93(24) , 13770–13773 (1996).
  • Marti O , RibiHO, DrakeB, AlbrechtTR, QuateCF, HansmaPK. Atomic force microscopy of an organic monolayer. Science239(4835) , 50–52 (1988).
  • Zhu R , HoworkaS, PröllJ et al. Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nat. Nanotechnol. 5(11) , 788–791 (2010).
  • Cerf A , CiprianyBR, BenítezJJ, CraigheadHG. Single DNA molecule patterning for high-throughput epigenetic mapping. Anal. Chem.83(21) , 8073–8077 (2011).
  • Cipriany BR , ZhaoR, MurphyPJ et al. Single molecule epigenetic analysis in a nanofluidic channel. Anal. Chem. 82(6) , 2480–2487 (2010).
  • Fang Lim S , KarpusenkoA, SakonJJ, HookJA, LamarTA, RiehnR. DNA methylation profiling in nanochannels. Biomicrofluidics5(3) , 34106–341068 (2011).
  • Michalet X , EkongR, FougerousseF et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277(5331) , 1518–1523 (1997).
  • Ananiev GE , GoldsteinS, RunnheimR et al. Optical mapping discerns genome wide DNA methylation profiles. BMC Mol. Biol. 09 , 68 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.