334
Views
1
CrossRef citations to date
0
Altmetric
Review

The Epigenetic Lorax: Gene–Environment Interactions in Human Health

, &
Pages 383-402 | Published online: 24 Aug 2012

References

  • Spiegelman BM , FlierJS. Obesity and the regulation of energy balance. Cell104 , 531–543 (2001).
  • Ogden CL , CarrollMD, CurtinLR, LambMM, FlegalKM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA303 , 242–249 (2010).
  • Ogden CL , CarrollMD, KitBK, FlegalKM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA307(5) , 483–490 (2012).
  • Boyle CA , BouletS, SchieveLA et al. Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics 127 , 1034–1042 (2011).
  • Rice CE . The changing prevalence of the autism spectrum disorders. Am. Fam. Phys.83 , 515–520 (2011).
  • Daxinger L , WhitelawE. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet.13(3) , 153–162 (2012).
  • Hochberg Z , FeilR, ConstanciaM et al. Child health, developmental plasticity, and epigenetic programming. Endocr. Rev. 32 , 159–224 (2011).
  • Edwards TM , MyersJP. Environmental exposures and gene regulation in disease etiology. Environ. Health Perspect.115 , 1264–1270 (2007).
  • Gogvadze V , StridhH, OrreniusS, CotgreaveI. Tributyltin causes cytochrome C release from isolated mitochondria by two discrete mechanisms. Biochem. Biophys. Res. Commun.292(4) , 904–908 (2002).
  • Grote K , HoblerC, AndradeAJ et al. Effects of in utero and lactational exposure to triphenyltin chloride on pregnancy outcome and postnatal development in rat offspring. Toxicology 238 , 177–185 (2007).
  • Grun F , WatanabeH, ZamanianZ et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 20(9) , 2141–2155 (2006).
  • Inadera H , ShimomuraA. Environmental chemical tributyltin augments adipocyte differentiation. Toxicol. Lett.159(3) , 226–234 (2005).
  • Kirchner S , KieuT, ChowC, CaseyS, BlumbergB. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol. Endocrinol.24(3) , 526–539 (2010).
  • Li X , YcazaJ, BlumbergB. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor γ to induce adipogenesis in murine 3T3-L1 preadipocytes. J. Steroid Biochem. Mol. Biol.127(1–2) , 9–15 (2011).
  • Grun F , BlumbergB. Minireview: the case for obesogens. Mol. Endocrinol.23(8) , 1127–1134 (2009).
  • Grun F , BlumbergB. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology147(6 Suppl.) , S50–S55 (2006).
  • Liu G , CunninghamC, DownsSM, FinebergN. A spatial analysis of obesogenic environments for children. Proc. AMIA Symp.2002 , 459–463 (2002).
  • Guo Y , KannanK. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ. Sci. Technol.45(8) , 3788–3794 (2011).
  • Kannan K , TakahashiS, FujiwaraN, MizukawaH, TanabeS. Organotin compounds, including butyltins and octyltins, in house dust from Albany, New York, USA. Arch. Environ. Contam. Toxicol.58(4) , 901–907 (2010).
  • Kannan K , TanabeS, TatsukawaR. Occurrence of butyltin residues in certain foodstuffs. Bull. Environ. Contam. Toxicol.55(4) , 510–516 (1995).
  • Liao C , KannanK. High levels of bisphenol a in paper currencies from several countries, and implications for dermal exposure. Environ. Sci. Technol.45 , 6761–6768 (2011).
  • Loganathan BG , KannanK, SenthilkumarK, SickelJ, OwenDA. Occurrence of butyltin residues in sediment and mussel tissues from the lower-most Tennessee River and Kentucky Lake, U.S.A. Chemosphere39(14) , 2401–2408 (1999).
  • Loganathan SN , KannanK. Occurrence of bisphenol a in indoor dust from two locations in the eastern United States and implications for human exposures. Arch. Environ. Contam. Toxicol.61(1) , 68–73 (2011).
  • Ma J , AddinkR, YunS et al. Polybrominated dibenzo-p-dioxins/ dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China. Environ. Sci. Technol. 43(19) , 7350–7356 (2009).
  • Murata S , TakahashiS, AgusaT et al. Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia). Mar. Pollut. Bull. 56(4) , 641–649 (2008).
  • U.S. Environmental Protection Agency Office of Pesticide Programs Health Effects Division and Environmental Fate and Effects Division in collaboration with the Office of Research and Development, Re-Evaluation of Human Health Effects of Atrazine. Review of non-cancer epidemiology, experimental animal and in vitro studies and drinking water monitoring frequency. Presented to: The Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Washington DC, USA, April 2010.
  • Fujimoto VY , KimD, vom Saal FS et al. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil. Steril.95(5) , 1816–1819 (2011).
  • Kandaraki E , ChatzigeorgiouA, LivadasS et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J. Clin. Endocrinol. Metab. 96(3) , E480–E484 (2011).
  • Vandenberg LN , ChahoudI, HeindelJJ et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect. 118 , 1055–1070 (2010).
  • Vandenberg LN , ChahoudI, PadmanabhanV, PaumgarttenFJ, SchoenfelderG. Biomonitoring studies should be used by regulatory agencies to assess human exposure levels and safety of bisphenol A. Environ. Health Perspect.118(8) , 1051–1054 (2010).
  • Vandenberg LN , HauserR, MarcusM, OleaN, WelshonsWV. Human exposure to bisphenol A (BPA). Reprod. Toxicol.24 , 139–177 (2007).
  • Vandenberg LN , MaffiniMV, WadiaPR et al. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148 , 116–127 (2007).
  • Stein CR , SavitzDA, DouganM. Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am. J. Epidemiol.170 , 837–846 (2009).
  • Hoffman K , WebsterTF, BartellSM et al. Private drinking water wells as a source of exposure to perfluorooctanoic acid (PFOA) in communities surrounding a fluoropolymer production facility. Environ. Health Perspect. 119(1) , 92–97 (2011).
  • Hoffman K , WebsterTF, WeisskopfMG, WeinbergJ, VieiraVM. Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ. Health Perspect.118(12) , 1762–1767 (2010).
  • Zhang T , SunHW, WuQ et al. Perfluorochemicals in meat, eggs and indoor dust in China: assessment of sources and pathways of human exposure to perfluorochemicals. Environ. Sci. Technol. 44(9) , 3572–3579 (2010).
  • Lu Y , YuanT, YunSH et al. Occurrence of cyclic and linear siloxanes in indoor dust from China, and implications for human exposures. Environ. Sci. Technol. 44(16) , 6081–6087 (2010).
  • Zhang Z , AlomirahH, ChoHS et al. Urinary bisphenol a concentrations and their implications for human exposure in several asian countries. Environ. Sci. Technol. 45(16) , 7044–7050 (2011).
  • Durmaz E , OzmertEN, ErkekogluP et al. Plasma phthalate levels in pubertal gynecomastia. Pediatrics 125(1) , E122–E129 (2010).
  • Rudel RA , CamannDE, SpenglerJD, KornLR, BroadyJG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ. Sci. Technol.37(20) , 4543–4553 (2003).
  • Arase S , IshiiK, IgarashiK et al. Endocrine disrupter bisphenol A increases in situ estrogen production in the mouse urogenital sinus. Biol. Reprod. 84(4) , 734–742 (2010).
  • Dolinoy DC , HuangD, JirtleRL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl Acad. Sci. USA104(32) , 13056–13061 (2007).
  • Hunt PA , KoehlerKE, SusiarjoM et al. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 13 , 546–553 (2003).
  • Kang ER , IqbalK, TranDA et al. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics 6(7) , 937–950 (2011).
  • Lenie S , CortvrindtR, Eichenlaub-RitterU, SmitzJ. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat. Res.651(1–2) , 71–81 (2008).
  • Nishizawa H , MoritaM, SugimotoM, ImanishiS, ManabeN. Effects of in utero exposure to bisphenol A on mRNA expression of arylhydrocarbon and retinoid receptors in murine embryos. J. Reprod. Dev.51(3) , 315–324 (2005).
  • Richter CA , BirnbaumLS, FarabolliniF et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol.24 , 199–224 (2007).
  • Rodriguez HA , SantambrosioN, SantamariaCG, Munoz-de-ToroM, LuqueEH. Neonatal exposure to bisphenol A reduces the pool of primordial follicles in the rat ovary. Reprod. Toxicol.30(4) , 550–557 (2010).
  • Rubin BS , LenkowskiJR, SchaeberleCM et al. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology 147(8) , 3681–3691 (2006).
  • Vandenberg LN , MaffiniMV, SchaeberleCM et al. Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reprod. Toxicol. 26(3–4) , 210–219 (2008).
  • Wadia PR , VandenbergLN, SchaeberleCM et al. Perinatal bisphenol A exposure increases estrogen sensitivity of the mammary gland in diverse mouse strains. Environ. Health Perspect. 115(4) , 592–598 (2007).
  • Weng YI , HsuPY, LiyanarachchiS et al. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol. Appl. Pharmacol. 248(2) , 111–121 (2010).
  • Cooney CM . PFOS alters immune response at very low exposure levels. Environ. Sci. Technol.42 , 3486–3487 (2008).
  • Peden-Adams MM , KellerJM, EudalyJG et al. Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol. Sci. 104 , 144–154 (2008).
  • Fenton SE , ReinerJL, NakayamaSF et al. Analysis of PFOA in dosed CD-1 mice. Part 2. Disposition of PFOA in tissues and fluids from pregnant and lactating mice and their pups. Reprod. Toxicol. 27(3–4) , 365–372 (2009).
  • White SS , CalafatAM, KuklenyikZ et al. Gestational PFOA exposure of mice is associated with altered mammary gland development in dams and female offspring. Toxicol. Sci. 96(1) , 133–144 (2007).
  • White SS , FentonSE, HinesEP. Endocrine disrupting properties of perfluorooctanoic acid. J. Steroid Biochem. Mol. Biol.127 , 16–26 (2011).
  • White SS , KatoK, JiaLT et al. Effects of perfluorooctanoic acid on mouse mammary gland development and differentiation resulting from cross-foster and restricted gestational exposures. Reprod. Toxicol. 27(3–4) , 289–298 (2009).
  • White SS , StankoJP, KatoK et al. Gestational and chronic low-dose PFOA exposures and mammary gland growth and differentiation in three generations of CD-1 mice. Environ. Health Perspect. 119(8) , 1070–1076 (2011).
  • Wolf CJ , FentonSE, SchmidJE et al. Developmental toxicity of perfluorooctanoic acid in the CD-1 mouse after cross-foster and restricted gestational exposures. Toxicol. Sci. 95(2) , 462–473 (2007).
  • Birnbaum LS , FentonSE. Cancer and developmental exposure to endocrine disruptors. Environ. Health Perspect.111 , 389–394 (2003).
  • Enoch RR , StankoJP, GreinerSN et al. Mammary gland development as a sensitive end point after acute prenatal exposure to an atrazine metabolite mixture in female Long-Evans rats. Environ. Health Perspect. 115(4) , 541–547 (2007).
  • Foradori CD , HindsLR, HannemanWH, HandaRJ. Effects of atrazine and its withdrawal on gonadotropin-releasing hormone neuroendocrine function in the adult female Wistar rat. Biol. Reprod.81(6) , 1099–1105 (2009).
  • Foradori CD , HindsLR, HannemanWH et al. Atrazine inhibits pulsatile luteinizing hormone release without altering pituitary sensitivity to a gonadotropin-releasing hormone receptor agonist in female Wistar rats. Biol. Reprod. 81(1) , 40–45 (2009).
  • Foradori CD , HindsLR, QuihuisAM et al. The differential effect of atrazine on luteinizing hormone release in adrenalectomized adult female Wistar rats. Biol. Reprod. 85(4) , 684–689 (2011).
  • Gojmerac T , KartalB, CuricS et al. Serum biochemical changes associated with cystic ovarian degeneration in pigs after atrazine treatment. Toxicol. Lett. 85(1) , 9–15 (1996).
  • Graves JE , RichardsonME, BernardRS, CamperND, BridgesWC. Atrazine effects on in vitro maturation and in vitro fertilization in the bovine oocyte. J. Environ. Sci. Health B.37(2) , 103–112 (2002).
  • Gunderson MP , VeldhoenN, SkirrowRC et al. Effect of low dose exposure to the herbicide atrazine and its metabolite on cytochrome P450 aromatase and steroidogenic factor-1 mRNA levels in the brain of premetamorphic bullfrog tadpoles (Rana catesbeiana). Aquat. Toxicol. 102(1–2) , 31–38 (2011).
  • Hayes TB , AndersonLL, BeasleyVR et al. Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J. Steroid Biochem. Mol. Biol. 127(1–2) , 64–73 (2011).
  • Juliani CC , Silva-ZacarinEC, SantosDC, BoerPA. Effects of atrazine on female Wistar rats: morphological alterations in ovarian follicles and immunocytochemical labeling of 90 kDa heat shock protein. Micron39(5) , 607–616 (2008).
  • Moon HJ , HanSY, ShinJH et al. Gestational exposure to nonylphenol causes precocious mammary gland development in female rat offspring. J. Reprod. Dev. 53(2) , 333–344 (2007).
  • Orton F , LutzI, KloasW, RoutledgeEJ. Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence. Environ. Sci. Technol.43(6) , 2144–2150 (2009).
  • Rayner JL , EnochRR, FentonSE. Adverse effects of prenatal exposure to atrazine during a critical period of mammary gland growth. Toxicol. Sci.87 , 255–266 (2005).
  • Rayner JL , EnochRR, WolfDC, FentonSE. Atrazine-induced reproductive tract alterations after transplacental and/or lactational exposure in male Long-Evans rats. Toxicol. Appl. Pharmacol.218 , 238–248 (2007).
  • Rowe AM , BrundageKM, BarnettJB. Developmental immunotoxicity of atrazine in rodents. Basic Clin. Pharmacol. Toxicol.102 , 139–145 (2008).
  • Rowe AM , BrundageKM, BarnettJB. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release. Toxicol. Appl. Pharmacol.221(2) , 179–188 (2007).
  • Rowe AM , BrundageKM, SchaferR, BarnettJB. Immunomodulatory effects of maternal atrazine exposure on male Balb/c mice. Toxicol. Appl. Pharmacol.214(1) , 69–77 (2006).
  • Stanko JP , EnochRR, RaynerJL et al. Effects of prenatal exposure to a low dose atrazine metabolite mixture on pubertal timing and prostate development of male Long-Evans rats. Reprod. Toxicol. 30(4) , 540–549 (2010).
  • Suzawa M , IngrahamHA. The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells. PLoS ONE3(5) , e2117 (2008).
  • Bo E , Viglietti-PanzicaC, PanzicaGC. Acute exposure to tributyltin induces c-fos activation in the hypothalamic arcuate nucleus of adult male mice. Neurotoxicology32(2) , 277–280 (2011).
  • Chen Y , ZuoZ, ChenS et al. Reduction of spermatogenesis in mice after tributyltin administration. Toxicology 251(1–3) , 21–27 (2008).
  • Kishta O , AdeekoA, LiD et al. In utero exposure to tributyltin chloride differentially alters male and female fetal gonad morphology and gene expression profiles in the Sprague-Dawley rat. Reprod. Toxicol.23(1) , 1–11 (2007).
  • Ohno S , NakajimaY, NakajinS. Triphenyltin and Tributyltin inhibit pig testicular 17β-hydroxysteroid dehydrogenase activity and suppress testicular testosterone biosynthesis. Steroids70(9) , 645–651 (2005).
  • Padros J , PelletierE, RibeiroCO. Metabolic interactions between low doses of benzo[a]pyrene and tributyltin in arctic charr (Salvelinus alpinus): a long-term in vivo study. Toxicol. Appl. Pharmacol.192(1) , 45–55 (2003).
  • Pavlikova N , KortnerTM, ArukweA. Peroxisome proliferator-activated receptors, estrogenic responses and biotransformation system in the liver of salmon exposed to tributyltin and second messenger activator. Aquat. Toxicol.99(2) , 176–185 (2010).
  • Roepke TA , SnyderMJ, CherrGN. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Aquat. Toxicol.71(2) , 155–173 (2005).
  • Wilson S , DzonL, ReedA, PruittM, WhalenMM. Effects of in vitro exposure to low levels of organotin and carbamate pesticides on human natural killer cell cytotoxic function. Environ. Toxicol.19(6) , 554–563 (2004).
  • Yamada J , InoueK, FurukawaT, FukudaA. Low-concentration tributyltin perturbs inhibitory synaptogenesis and induces neuronal death in immature but not mature neurons. Toxicol. Lett.198(2) , 282–288 (2010).
  • Zuo Z , ChenS, WuT et al. Tributyltin causes obesity and hepatic steatosis in male mice. Environ. Toxicol. 26(1) , 79–85 (2011).
  • Lind PM , LindL. Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly. Atherosclerosis218(1) , 207–213 (2011).
  • Chang SC , NokerPE, GormanGS et al. Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reprod. Toxicol. 33(4) , 428–440 (2011).
  • Florentin A , DeblondeT, DiguioN, HautemaniereA, HartemannP. Impacts of two perfluorinated compounds (PFOS and PFOA) on human hepatoma cells: cytotoxicity but no genotoxicity? Int. J. Hyg. Environ. Health.214(6) , 493–499 (2011).
  • Bogdanska J , BorgD, SundstromM et al. Tissue distribution of (3)S-labelled perfluorooctane sulfonate in adult mice after oral exposure to a low environmentally relevant dose or a high experimental dose. Toxicology 284 , 54–62 (2011).
  • Zheng L , DongGH, ZhangYH et al. Type 1 and Type 2 cytokines imbalance in adult male C57BL/6 mice following a 7-day oral exposure to perfluorooctanesulfonate (PFOS). J. Immunotoxicol. 8(1) , 30–38 (2011).
  • van Dartel DA , PenningsJL, RobinsonJF, KleinjansJC, PiersmaAH. Discriminating classes of developmental toxicants using gene expression profiling in the embryonic stem cell test. Toxicol. Lett.201(2) , 143–151 (2011).
  • Lin Z , FisherJW, RossMK, FilipovNM. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse. Toxicol. Appl. Pharmacol.251(1) , 16–31 (2011).
  • Chauvigne F , MenuetA, LesneL et al. Time- and dose-related effects of di- (2-ethylhexyl) phthalate and its main metabolites on the function of the rat fetal testis in vitro. Environ. Health Perspect. 117(4) , 515–521 (2009).
  • Bernal AJ , JirtleRL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res. A. Clin. Mol. Teratol.88(10) , 938–944 (2010).
  • Olsen GW , ButenhoffJL, ZobelLR. Perfluoroalkyl chemicals and human fetal development: an epidemiologic review with clinical and toxicological perspectives. Reprod. Toxicol.27(3–4) , 212–230 (2009).
  • Hengstler JG , FothH, GebelT et al. Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit. Rev. Toxicol. 41(4) , 263–291 (2011).
  • Rubin BS . Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol.127 , 27–34 (2011).
  • Gupta RK , SinghJM, LeslieTC et al. Di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate inhibit growth and reduce estradiol levels of antral follicles in vitro. Toxicol. Appl. Pharmacol. 242(2) , 224–230 (2010).
  • Lee J , ParkJ, JangB, KnudsenTB. Altered expression of genes related to zinc homeostasis in early mouse embryos exposed to di-2-ethylhexyl phthalate. Toxicol. Lett.152(1) , 1–10 (2004).
  • Anas MK , SuzukiC, YoshiokaK, IwamuraS. Effect of mono-(2-ethylhexyl) phthalate on bovine oocyte maturation in vitro. Reprod. Toxicol.17(3) , 305–310 (2003).
  • Yolton K , XuY, StraussD et al. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol. Teratol. 33(5) , 558–566 (2011).
  • Meeker JD , FergusonKK. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Environ. Health Perspect.119(10) , 1396–1402 (2011).
  • Janer G , VerhoefA, GilsingHD, PiersmaAH. Use of the rat postimplantation embryo culture to assess the embryotoxic potency within a chemical category and to identify toxic metabolites. Toxicol. In vitro22(7) , 1797–1805 (2008).
  • Maranghi F , LorenzettiS, TassinariR et al. In utero exposure to di-(2-ethylhexyl) phthalate affects liver morphology and metabolism in post-natal CD-1 mice. Reprod. Toxicol.29(4) , 427–432 (2010).
  • Jones HB , GarsideDA, LiuR, RobertsJC. The influence of phthalate esters on Leydig cell structure and function in vitro and in vivo. Exp. Mol. Pathol.58(3) , 179–193 (1993).
  • Kim BN , ChoSC, KimY et al. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol. Psychiatry 66(10) , 958–963 (2009).
  • Latini G , De Felice C, Presta G et al. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ. Health Perspect.111 , 1783–1785 (2003).
  • Lin LC , WangSL, ChangYC et al. Associations between maternal phthalate exposure and cord sex hormones in human infants. Chemosphere 83(8) , 1192–1199 (2011).
  • Swan SH , LiuF, HinesM et al. Prenatal phthalate exposure and reduced masculine play in boys. Int. J. Androl. 33(2) , 259–269 (2010).
  • Latini G , Del Vecchio A, Massaro M, Verrotti A, DE Felice C. In utero exposure to phthalates and fetal development. Curr. Med. Chem.13 , 2527–2534 (2006).
  • Agarwal DK , LawrenceWH, AutianJ. Antifertility and mutagenic effects in mice from parenteral administration of di-2-ethylhexyl phthalate (DEHP). J. Toxicol. Environ. Health16(1) , 71–84 (1985).
  • Xu Y , AgrawalS, CookTJ, KnippGT. Maternal di-(2-ethylhexyl)-phthalate exposure influences essential fatty acid homeostasis in rat placenta. Placenta29(11) , 962–969 (2008).
  • Balabanic D , RupnikM, KlemencicAK. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod. Fertil. Dev.23(3) , 403–416 (2011).
  • Jurewicz J , HankeW. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int. J. Occup. Med. Environ. Health.24(2) , 115–141 (2011).
  • Seidlova-Wuttke D , JarryH, WuttkeW. Pure estrogenic effect of benzophenone-2 (BP2) but not of bisphenol A (BPA) and dibutylphtalate (DBP) in uterus, vagina and bone. Toxicology205(1–2) , 103–112 (2004).
  • Struve MF , GaidoKW, HensleyJB et al. Reproductive toxicity and pharmacokinetics of di-n-butyl phthalate (DBP) following dietary exposure of pregnant rats. Birth Defects Res. B Dev. Reprod. Toxicol. 86(4) , 345–354 (2009).
  • Lovekamp-Swan T , DavisBJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ. Health Perspect.111 , 139–145 (2003).
  • Davis BJ , MaronpotRR, HeindelJJ. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol. Appl. Pharmacol.128(2) , 216–223 (1994).
  • McKee RH . Phthalate exposure and early thelarche. Environ. Health Perspect.112 , A541–A543 (2004).
  • Bell FP . Effects of phthalate esters on lipid metabolism in various tissues, cells and organelles in mammals. Environ. Health Perspect.45 , 41–50 (1982).
  • Chen SQ , ChenJN, CaiXH et al. Perinatal exposure to di-(2-ethylhexyl) phthalate leads to restricted growth and delayed lung maturation in newborn rats. J. Perinat. Med. 38(5) , 515–521 (2010).
  • Xu Y , KnippGT, CookTJ. Effects of di-(2-ethylhexyl)-phthalate and its metabolites on the lipid profiling in rat HRP-1 trophoblast cells. Arch. Toxicol.80(5) , 293–298 (2006).
  • Zhang Y , LinL, CaoY et al. Phthalate levels and low birth weight: a nested case-control study of Chinese newborns. J. Pediatr. 155(4) , 500–504 (2009).
  • Lindstrom AB , StrynarMJ, LibeloEL. Polyfluorinated compounds: past, present, and future. Environ. Sci. Technol.45 , 7954–7961 (2011).
  • Greenlee AR , EllisTM, BergRL. Low-dose agrochemicals and lawn-care pesticides induce developmental toxicity in murine preimplantation embryos. Environ. Health Perspect.112(6) , 703–709 (2004).
  • Munger R , IsacsonP, HuS et al. Intrauterine growth retardation in Iowa communities with herbicide-contaminated drinking water supplies. Environ. Health Perspect. 105(3) , 308–314 (1997).
  • Ochoa-Acuna H , FrankenbergerJ, HahnL, CarbajoC. Drinking-water herbicide exposure in Indiana and prevalence of small-for-gestational-age and preterm delivery. Environ. Health Perspect.117(10) , 1619–1624 (2009).
  • Pinchuk LM , LeeSR, FilipovNM. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells. Toxicol. Appl. Pharmacol.223(3) , 206–217 (2007).
  • Villanueva CM , DurandG, CoutteMB, ChevrierC, CordierS. Atrazine in municipal drinking water and risk of low birth weight, preterm delivery, and small-for-gestational-age status. Occup. Environ. Med.62(6) , 400–405 (2005).
  • Benachour N , SeraliniGE. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem. Res. Toxicol.22(1) , 97–105 (2009).
  • Martinez-Finley EJ , GogginSL, LabrecqueMT, AllanAM. Reduced expression of MAPK/ERK genes in perinatal arsenic-exposed offspring induced by glucocorticoid receptor deficits. Neurotoxicol. Teratol.33(5) , 530–537 (2011).
  • Martin SA , EmilioR, MaharaV. Role of oxidative stress in transformation induced by metal mixture. Oxid. Med. Cell Longev.2011 , 935160 (2011).
  • Jomova K , JenisovaZ, FeszterovaM et al. Arsenic: toxicity, oxidative stress and human disease. J. Appl. Toxicol. 31 , 95–107 (2011).
  • Wu J , ChenG, LiaoY et al. Arsenic levels in the soil and risk of birth defects: a population-based case-control study using GIS technology. J. Environ. Health 74(4) , 20–25 (2011).
  • Alissa EM , FernsGA. Heavy metal poisoning and cardiovascular disease. J. Toxicol.2011 , 870125 (2011).
  • Grun F , BlumbergB. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev. Endocr. Metab. Disord.8(2) , 161–171 (2007).
  • Janesick A , BlumbergB. Obesogens, stem cells and the developmental programming of obesity. Int. J. Androl.35(3) , 437–448 (2012).
  • Flegal KM , CarrollMD, OgdenCL, CurtiLR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA303 , 235–241 (2010).
  • Wolf AM , WoodworthKA. Obesity prevention: recommended strategies and challenges. Am. J. Med.122 , S19–S23 (2009).
  • Harazono A , EmaM. Suppression of decidual cell response induced by tributyltin chloride in pseudopregnant rats: a cause of early embryonic loss. Arch. Toxicol.74(10) , 632–637 (2000).
  • Ema M , FujiiS, IkkaT et al. Early pregnancy failure induced by dibutyltin dichloride in mice. Environ. Toxicol. 22(1) , 44–52 (2007).
  • Ema M , MiyawakiE, KawashimaK. Adverse effects of diphenyltin dichloride on initiation and maintenance of pregnancy in rats. Toxicol. Lett.108(1) , 17–25 (1999).
  • Schug TT , JanesickA, BlumbergB, HeindelJJ. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol.127 , 204–215 (2011).
  • Avissar-Whiting M , VeigaKR, UhlKM et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol. 29(4) , 401–406 (2010).
  • Benachour N , ArisA. Toxic effects of low doses of Bisphenol-A on human placental cells. Toxicol. Appl. Pharmacol.241 , 322–328 (2009).
  • Tachibana T , WakimotoY, NakamutaN et al. Effects of bisphenol A (BPA) on placentation and survival of the neonates in mice. J. Reprod. Dev. 53(3) , 509–514 (2007).
  • Jin H , AudusKL. Effect of bisphenol A on drug efflux in BeWo, a human trophoblast-like cell line. Placenta26(Suppl. A) , S96–S103 (2005).
  • Imanishi S , ManabeN, NishizawaH et al. Effects of oral exposure of bisphenol A on mRNA expression of nuclear receptors in murine placentae assessed by DNA microarray. J. Reprod. Dev. 49(4) , 329–336 (2003).
  • Cooke GM , ForsythDS, BondyGS et al. Organotin speciation and tissue distribution in rat dams, fetuses, and neonates following oral administration of tributyltin chloride. J. Toxicol. Environ. Health A 71(6) , 384–395 (2008).
  • Takeda Y , LiuX, SumiyoshiM et al. Placenta expressing the greatest quantity of bisphenol A receptor ERR{γ} among the human reproductive tissues: Predominant expression of type-1 ERRγ isoform. J. Biochem. 146(1) , 113–122 (2009).
  • Fowden AL , SibleyC, ReikW, ConstanciaM. Imprinted genes, placental development and fetal growth. Horm. Res.65(Suppl. 3) , 50–58 (2006).
  • Angiolini E , FowdenA, CoanP et al. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27(Suppl. A) , S98–S102 (2006).
  • Constancia M , AngioliniE, SandoviciI et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc. Natl Acad. Sci. USA 102(52) , 19219–19224 (2005).
  • Reik W , ConstanciaM, FowdenA et al. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J. Physiol. 547 , 35–44 (2003).
  • Constancia M , HembergerM, HughesJ et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892) , 945–948 (2002).
  • Reik W , DaviesK, DeanW, KelseyG, ConstanciaM. Imprinted genes and the coordination of fetal and postnatal growth in mammals. Novartis Found. Symp.237 , 19–31; Discussion 31–42 (2001).
  • Ashworth A . Effects of intrauterine growth retardation on mortality and morbidity in infants and young children. Eur. J. Clin. Nutr.52(Suppl. 1) , S34–S41; Discussion S41–S42 (1998).
  • Ortiz-Mantilla S , ChoudhuryN, LeeversH, BenasichAA. Understanding language and cognitive deficits in very low birth weight children. Dev. Psychobiol.50 , 107–126 (2008).
  • Barker DJ . Human growth and cardiovascular disease. Nestle Nutr. Workshop Ser. Pediatr. Program61 , 21–38 (2008).
  • Shapira N . Prenatal nutrition: a critical window of opportunity for mother and child. Womens Health4(6) , 639–656 (2008).
  • Decherf S , DemeneixBA. The obesogen hypothesis: a shift of focus from the periphery to the hypothalamus. J. Toxicol. Environ. Health B Crit. Rev.14(5–7) , 423–448 (2011).
  • Skinner MK , ManikkamM, Guerrero-BosagnaC. Epigenetic transgenerational actions of endocrine disruptors. Reprod. Toxicol.31 , 337–343 (2011).
  • Anway MD , SkinnerMK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod. Biomed. Online16 , 23–25 (2008).
  • Anway MD , CuppAS, UzumcuM, SkinnerMK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science308 , 1466–1469 (2005).
  • Martinez VD , VucicEA, AdonisM, GilL, LamWL. Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol. Biol. Int.2011 , 718974 (2011).
  • Zhang W , WangL, FanQ et al. Arsenic trioxide re-sensitizes ERα-negative breast cancer cells to endocrine therapy by restoring ERα expression in vitro and in vivo. Oncol. Rep. 26(3) , 621–628 (2011).
  • Fu HY , ShenJZ, WuY et al. Arsenic trioxide inhibits DNA methyltransferase and restores expression of methylation-silenced CDKN2B/CDKN2A genes in human hematologic malignant cells. Oncol. Rep. 24(2) , 335–343 (2010).
  • Smeester L , RagerJE, BaileyKA et al. Epigenetic changes in individuals with arsenicosis. Chem. Res. Toxicol. 24(2) , 165–167 (2011).
  • Jensen TJ , NovakP, WnekSM, GandolfiAJ, FutscherBW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol. Appl. Pharmacol.241(2) , 221–229 (2009).
  • Hsu LI , ChenWP, YangTY et al. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and risk of arsenic-induced urothelial carcinoma in residents of southwestern Taiwan. J. Biomed. Sci. 18 , 51 (2011).
  • Nohara K , BabaT, MuraiH et al. Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Arch. Toxicol. 85(6) , 653–661 (2011).
  • LaPlant Q , VialouV, CovingtonHE 3rd et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci.13(9) , 1137–1143 (2010).
  • Maze I , FengJ, WilkinsonMB et al. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc. Natl Acad. Sci. USA 108(7) , 3035–3040 (2011).
  • Anier K , MalinovskajaK, Aonurm-HelmA, ZharkovskyA, KaldaA. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology35(12) , 2450–2461 (2010).
  • Speroff L . The effect of aging on fertility. Curr. Opin. Obstet. Gynecol.6 , 115–120 (1994).
  • Sauer MV . The impact of age on reproductive potential: lessons learned from oocyte donation. Maturitas30(2) , 221–225 (1998).
  • Navot D , DrewsMR, BerghPA et al. Age-related decline in female fertility is not due to diminished capacity of the uterus to sustain embryo implantation. Fertil. Steril. 61 , 97–101 (1994).
  • Sherins RJ , ThorsellLP, DorfmannA et al. Intracytoplasmic sperm injection facilitates fertilization even in the most severe forms of male infertility: pregnancy outcome correlates with maternal age and number of eggs available. Fertil. Steril. 64(2) , 369–375 (1995).
  • Hunt PA , HassoldTJ. Human female meiosis: what makes a good egg go bad? Trends Genet.24(2) , 86–93 (2008).
  • Volarcik K , SheeanL, GoldfarbJ et al. The meiotic competence of in-vitro matured human oocytes is influenced by donor age: evidence that folliculogenesis is compromised in the reproductively aged ovary. Hum. Reprod. 13(1) , 154–160 (1998).
  • Bentov Y , YavorskaT, EsfandiariN, JurisicovaA, CasperRF. The contribution of mitochondrial function to reproductive aging. J. Assist. Reprod. Genet.28 , 773–783 (2011).
  • Wise DD , ShearJB. Quantitation of nicotinamide and serotonin derivatives and detection of flavins in neuronal extracts using capillary electrophoresis with multiphoton-excited fluorescence. J. Chromatogr. A.1111(2) , 153–158 (2006).
  • Okasha M , McCarronP, McEwenJ, SmithGD. Age at menarche: secular trends and association with adult anthropometric measures. Ann. Hum. Biol.28 , 68–78 (2001).
  • Selesniemi K , LeeHJ, MuhlhauserA, TillyJL. Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc. Natl Acad. Sci. USA108 , 12319–12324 (2011).
  • Spinelli S , CheferS, CarsonRE et al. Effects of early-life stress on serotonin(1A) receptors in juvenile Rhesus monkeys measured by positron emission tomography. Biol. Psychiatry 67(12) , 1146–1153 (2010).
  • Ichise M , VinesDC, GuraT et al. Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J. Neurosci. 26(17) , 4638–4643 (2006).
  • Cirulli F , ReifA, HerterichS et al. A novel BDNF polymorphism affects plasma protein levels in interaction with early adversity in rhesus macaques. Psychoneuroendocrinology 36(3) , 372–379 (2011).
  • Lindell SG , SchwandtML, SunH et al. Functional NPY variation as a factor in stress resilience and alcohol consumption in rhesus macaques. Arch. Gen. Psychiatry 67(4) , 423–431 (2010).
  • Kinnally EL , CapitanioJP, LeibelR et al. Epigenetic regulation of serotonin transporter expression and behavior in infant rhesus macaques. Genes. Brain Behav. 9(6) , 575–582 (2010).
  • Falkenberg VR , GurbaxaniBM, UngerER, RajeevanMS. Functional genomics of serotonin receptor 2A (HTR2A): interaction of polymorphism, methylation, expression and disease association. Neuromol. Med.13(1) , 66–76 (2011).
  • Roth TL , ZoladzPR, SweattJD, DiamondDM. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J. Psychiatry Res.45(7) , 919–926 (2011).
  • Champagne FA , CurleyJP. Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci. Biobehav. Rev.33(4) , 593–600 (2009).
  • Szyf M . The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics6 , 971–978 (2011).
  • Szyf M . The early life environment and the epigenome. Biochim. Biophys. Acta1790 , 878–885 (2009).
  • Szyf M , McGowanP, MeaneyMJ. The social environment and the epigenome. Environ. Mol. Mutagen.49 , 46–60 (2008).
  • Lee RS , TamashiroKL, YangX et al. A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacol. (Berl.) 218(1) , 303–312 (2011).
  • Oberlander TF , WeinbergJ, PapsdorfM et al. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3(2) , 97–106 (2008).
  • Chen GL , NovakMA, MeyerJS et al. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: a retrospective analysis. Horm. Behav. 57(2) , 184–191 (2010).
  • Schwandt ML , LindellSG, HigleyJD et al. OPRM1 gene variation influences hypothalamic–pituitary–adrenal axis function in response to a variety of stressors in rhesus macaques. Psychoneuroendocrinology36(9) , 1303–1311 (2011).
  • Newman TK , SyagailoYV, BarrCS et al. Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biol. Psychiatry 57(2) , 167–172 (2005).
  • Labonte B , TureckiG. The epigenetics of suicide: explaining the biological effects of early life environmental adversity. Arch. Suicide Res.14(4) , 291–310 (2010).
  • Chen Y , ZhangJ, ZhangL, ShenY, XuQ. Effects of MAOA promoter methylation on susceptibility to paranoid schizophrenia. Hum. Genet.131(7) , 1081–1087 (2011).
  • Philibert RA , WernettP, PlumeJ et al. Gene environment interactions with a novel variable monoamine oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biol. Psychol. 87(3) , 366–371 (2011).
  • Philibert RA , GunterTD, BeachSR, BrodyGH, MadanA. MAOA methylation is associated with nicotine and alcohol dependence in women. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(5) , 565–570 (2008).
  • Philibert RA , BeachSR, GunterTD et al. The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B(2) , 619–628 (2010).
  • Launay JM , Del Pino M, Chironi G et al. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS ONE4(11) , e7959 (2009).
  • Shumay E , FowlerJS. Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches. Epigenetics5(4) , 325–342 (2010).
  • Sandovici I , LeppertM, HawkPR et al. Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Hum. Mol. Genet. 13 , 781 (2004).
  • Sandovici I , NaumovaAK, LeppertM, LinaresY, SapienzaC. A longitudinal study of X-inactivation ratio in human females. Hum. Genet.115 , 387–392 (2004).
  • Bjornsson HT , SigurdssonMI, FallinMD et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA 299(24) , 2877–2883 (2008).
  • Madrigano J , BaccarelliA, MittlemanMA et al. Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics 7(1) , 63–70 (2012).
  • Fraga MF , BallestarE, PazMF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102(30) , 10604–10609 (2005).
  • Poulsen P , EstellerM, VaagA, FragaMF. The epigenetic basis of twin discordance in age-related diseases. Pediatr. Res.61(5 Pt 2) , 38R–42R (2007).
  • Bollati V , SchwartzJ, WrightR et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 130(4) , 234–239 (2009).
  • Maegawa S , HinkalG, KimHS et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20(3) , 332–340 (2010).
  • Silviera ML , SmithBP, PowellJ, SapienzaC. Epigenetic differences in normal colon mucosa of cancer patients suggest altered dietary metabolic pathways. Cancer Prev. Res. (Phila.).5(3) , 374–384 (2012).
  • Sapienza C , LeeJ, PowellJ et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6(1) , 20–28 (2011).
  • Barker DJ . The fetal origins of adult hypertension. J. Hypertens. (Suppl. 10) , S39–S44 (1992).
  • Barker DJ , GluckmanPD, GodfreyKM et al. Fetal nutrition and cardiovascular disease in adult life. Lancet 341 , 938–941 (1993).
  • Barker DJ , HalesCN, FallCH et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36(1) , 62–67 (1993).
  • Eriksson JG , ForsenTJ, KajantieE, OsmondC, BarkerDJ. Childhood growth and hypertension in later life. Hypertension49 , 1415–1421 (2007).
  • Barker DJ , OsmondC, KajantieE, ErikssonJG. Growth and chronic disease: findings in the Helsinki Birth Cohort. Ann. Hum. Biol.36 , 445–458 (2009).
  • Sachdev HP , OsmondC, FallCH et al. Predicting adult metabolic syndrome from childhood body mass index: follow-up of the New Delhi birth cohort. Arch. Dis. Child 94(10) , 768–774 (2009).
  • Barker DJ . The developmental origins of adult disease. J. Am. Coll. Nutr.23 , S588–S595 (2004).
  • Lawson C , GieskeM, MurdochB et al. Gene expression in the fetal mouse ovary is altered by exposure to low doses of bisphenol A. Biol. Reprod. 84(1) , 79–86 (2011).
  • Muhlhauser A , SusiarjoM, RubioC et al. Bisphenol A effects on the growing mouse oocyte are influenced by diet. Biol. Reprod. 80(5) , 1066–1071 (2009).
  • Su YQ , SugiuraK, WigglesworthK et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135(1) , 111–121 (2008).
  • Chao HH , ZhangXF, ChenB et al. Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem. Cell Biol. 137(2) , 249–259 (2012).
  • Anckaert E , RomeroS, AdriaenssensT, SmitzJ. Effects of low methyl donor levels in culture medium during mouse follicle culture on oocyte imprinting establishment. Biol. Reprod.83(3) , 377–386 (2010).
  • Laanpere M , AltmaeS, Stavreus-EversA et al. Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr. Rev. 68(2) , 99–113 (2010).
  • Jongbloet PH , VerbeekAL, den Heijer M, Roeleveld N. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms resulting in suboptimal oocyte maturation: a discussion of folate status, neural tube defects, schizophrenia, and vasculopathy. J. Exp. Clin. Assist. Reprod.5 , 5 (2008).
  • Purcell SH , MoleyKH. The impact of obesity on egg quality. J. Assist. Reprod. Genet.28 , 517–524 (2011).
  • Marquard KL , StephensSM, JungheimES et al. Polycystic ovary syndrome and maternal obesity affect oocyte size in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil. Steril. 95(6) , 2146–2149, 2149.e1 (2011).
  • Jungheim ES , SchoellerEL, MarquardKL et al. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151(8) , 4039–4046 (2010).
  • Jungheim ES , MoleyKH. Current knowledge of obesity‘s effects in the pre- and periconceptional periods and avenues for future research. Am. J. Obstet. Gynecol.203(6) , 525–530 (2010).
  • Jungheim ES , LanzendorfSE, OdemRR et al. Morbid obesity is associated with lower clinical pregnancy rates after in vitro fertilization in women with polycystic ovary syndrome. Fertil. Steril. 92(1) , 256–261 (2009).
  • Van Hoeck V , SturmeyRG, Bermejo-AlvarezP et al. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS ONE 6(8) , e23183 (2011).
  • Jungheim ES , MaconesGA, OdemRR et al. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil. Steril. 95(6) , 1970–1974 (2011).
  • Wu LL , DunningKR, YangX et al. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology 151(11) , 5438–5445 (2010).
  • Zachut M , DekelI, LehrerH et al. Effects of dietary fats differing in n-6:n-3 ratio fed to high-yielding dairy cows on fatty acid composition of ovarian compartments, follicular status, and oocyte quality. J. Dairy Sci. 93(2) , 529–545 (2010).
  • Fouladi-Nashta AA , WonnacottKE, GutierrezCG et al. Oocyte quality in lactating dairy cows fed on high levels of n-3 and n-6 fatty acids. Reproduction 138(5) , 771–781 (2009).
  • Chen SE , McMurtryJP, WalzemRL. Overfeeding-induced ovarian dysfunction in broiler breeder hens is associated with lipotoxicity. Poult. Sci.85(1) , 70–81 (2006).
  • Davis TL , YangGJ, McCarreyJR, BartolomeiMS. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet.9(19) , 2885–2894 (2000).
  • Ueda T , AbeK, MiuraA et al. The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes. Cells 5(8) , 649–659 (2000).
  • Guerrero-Bosagna C , SettlesM, LuckerB, SkinnerMK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE5(9) , e13100 (2010).
  • Lees-Murdock DJ , WalshCP. DNA methylation reprogramming in the germ line. Adv. Exp. Med. Biol.626 , 1–15 (2008).
  • Hammoud SS , NixDA, ZhangH et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254) , 473–478 (2009).
  • Brykczynska U , HisanoM, ErkekS et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17(6) , 679–687 (2010).
  • Carrell DT . Epigenetics of the male gamete. Fertil. Steril.97 , 267–274 (2011).
  • Anway MD , RekowSS, SkinnerMK. Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis. Reprod. Toxicol.26(2) , 100–106 (2008).
  • Tesarik J . Paternal effects on cell division in the human preimplantation embryo. Reprod. Biomed. Online10 , 370–375 (2005).
  • Metges CC . Early nutrition and later obesity: animal models provide insights into mechanisms. Adv. Exp. Med. Biol.646 , 105–112 (2009).
  • Jungheim ES , MoleyKH. The impact of Type 1 and Type 2 diabetes mellitus on the oocyte and the preimplantation embryo. Semin. Reprod. Med.26(2) , 186–195 (2008).
  • Wang Q , MoleyKH. Maternal diabetes and oocyte quality. Mitochondrion10 , 403–410 (2010).
  • Wang Q , RatchfordAM, ChiMM et al. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol. Endocrinol. 23(10) , 1603–1612 (2009).
  • Jungheim ES , MaconesGA, OdemRR, PattersonBW, MoleyKH. Elevated serum α-linolenic acid levels are associated with decreased chance of pregnancy after in vitro fertilization. Fertil. Steril.96(4) , 880–883 (2011).
  • Watkins AJ , UrsellE, PantonR et al. Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 78(2) , 299–306 (2008).
  • Watkins AJ , WilkinsA, CunninghamC et al. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J. Physiol. 586(8) , 2231–2244 (2008).
  • Watkins AJ , PlattD, PapenbrockT et al. Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc. Natl Acad. Sci. USA 104(13) , 5449–5454 (2007).
  • Kwong WY , MillerDJ, WilkinsAP et al. Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses. Mol. Reprod. Dev. 74(1) , 48–56 (2007).
  • Kwong WY , MillerDJ, UrsellE et al. Imprinted gene expression in the rat embryo-fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction 132(2) , 265–277 (2006).
  • Fleming TP , KwongWY, PorterR et al. The embryo and its future. Biol. Reprod. 71 , 1046–1054 (2004).
  • Xiao S , DiaoH, SmithMA, SongX, YeX. Preimplantation exposure to bisphenol A (BPA) affects embryo transport, preimplantation embryo development, and uterine receptivity in mice. Reprod. Toxicol.32(4) , 434–441 (2011).
  • Takai Y , TsutsumiO, IkezukiY et al. Preimplantation exposure to bisphenol A advances postnatal development. Reprod. Toxicol. 15(1) , 71–74 (2001).
  • Varayoud J , RamosJG, BosquiazzoVL et al. Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology 152(3) , 1101–1111 (2011).
  • Morice L , BenaitreauD, DieudonneMN et al. Antiproliferative and proapoptotic effects of bisphenol A on human trophoblastic JEG-3 cells. Reprod. Toxicol. 32(1) , 69–76 (2011).
  • Berger RG , FosterWG, deCatanzaroD. Bisphenol-A exposure during the period of blastocyst implantation alters uterine morphology and perturbs measures of estrogen and progesterone receptor expression in mice. Reprod. Toxicol.30(3) , 393–400 (2010).
  • Xu Y , CookTJ, KnippGT. Effects of di-(2-ethylhexyl)-phthalate (DEHP) and its metabolites on fatty acid homeostasis regulating proteins in rat placental HRP-1 trophoblast cells. Toxicol. Sci.84(2) , 287–300 (2005).
  • Barrero MJ , BoueS, Izpisua Belmonte JC. Epigenetic mechanisms that regulate cell identity. Cell. Stem Cell7 , 565–570 (2010).
  • Heijmans BT , TobiEW, LumeyLH, SlagboomPE. The epigenome: archive of the prenatal environment. Epigenetics4(8) , 526–531 (2009).
  • Trounson A . The production and directed differentiation of human embryonic stem cells. Endocr. Rev.27 , 208–219 (2006).
  • Mikkelsen TS , KuM, JaffeDB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153) , 553–560 (2007).
  • Barrera LO , LiZ, SmithAD et al. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res. 18(1) , 46–59 (2008).
  • Osafune K , CaronL, BorowiakM et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26(3) , 313–315 (2008).
  • Abeyta MJ , ClarkAT, RodriguezRT et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13(6) , 601–608 (2004).
  • Kuegler PB , ZimmerB, WaldmannT et al. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27(1) , 17–42 (2010).
  • Seiler A , VisanA, BuesenR, GenschowE, SpielmannH. Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod. Toxicol.18(2) , 231–240 (2004).
  • Suzuki N , AndoS, SumidaK, HorieN, SaitoK. Analysis of altered gene expression specific to embryotoxic chemical treatment during embryonic stem cell differentiation into myocardiac and neural cells. J. Toxicol. Sci.36(5) , 569–585 (2011).
  • van Dartel DA , PenningsJL, de la Fonteyne LJ et al. Evaluation of developmental toxicant identification using gene expression profiling in embryonic stem cell differentiation cultures. Toxicol. Sci.119(1) , 126–134 (2011).
  • Groebe K , HayessK, Klemm-MannsM et al. Protein biomarkers for in vitro testing of embryotoxicity. J. Proteome Res. 9 , 5727–5738 (2010).
  • Rappolee DA , XieY, SlaterJA, ZhouS, PuscheckEE. Toxic stress prioritizes and imbalances stem cell differentiation: implications for new biomarkers and in vitro toxicology tests. Syst. Biol. Reprod. Med.58(1) , 33–40 (2012).
  • Beltrami AP , BarlucchiL, TorellaD et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114 , 763–776 (2003).
  • Bryder D , RossiDJ, WeissmanIL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol.169(2) , 338–346 (2006).
  • Alvarez-Buylla A , SeriB, DoetschF. Identification of neural stem cells in the adult vertebrate brain. Brain Res. Bull.57 , 751–758 (2002).
  • Ourednik J , OurednikV, LynchWP, SchachnerM, SnyderEY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol.20(11) , 1103–1110 (2002).
  • Waterland RA , LinJR, SmithCA, JirtleRL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum. Mol. Genet.15(5) , 705–716 (2006).
  • Hoyo C , MurthaAP, SchildkrautJM et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 6(7) , 928–936 (2011).
  • Waterland RA , DolinoyDC, LinJR et al. Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44(9) , 401–406 (2006).
  • Waterland RA , KellermayerR, LaritskyE et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6(12) , e1001252 (2010).
  • Kmetic I , Gaurina Srcek V, Slivac I et al. Atrazine exposure decreases cell proliferation in Chinese hamster ovary (CHO-K1) cell line. Bull. Environ. Contam. Toxicol.81(2) , 205–209 (2008).
  • Rayner JL , WoodC, FentonSE. Exposure parameters necessary for delayed puberty and mammary gland development in Long-Evans rats exposed in utero to atrazine. Toxicol. Appl. Pharmacol.195(1) , 23–34 (2004).
  • Solari M , PaquinJ, DucharmeP, BoilyM. P19 neuronal differentiation and retinoic acid metabolism as criteria to investigate atrazine, nitrite, and nitrate developmental toxicity. Toxicol. Sci.113(1) , 116–126 (2010).
  • Thomas P , SweatmanJ. Interference by atrazine and bisphenol-A with progestin binding to the ovarian progestin membrane receptor and induction of oocyte maturation in Atlantic croaker. Mar. Environ. Res.66(1) , 1–2 (2008).
  • Aloisi AM , Della Seta D, Ceccarelli I, Farabollini F. Bisphenol-A differently affects estrogen receptors-α in estrous-cycling and lactating female rats. Neurosci. Lett.310(1) , 49–52 (2001).
  • Ashby J , TinwellH. Uterotrophic activity of bisphenol A in the immature rat. Environ. Health Perspect.106 , 719–720 (1998).
  • Dalman A , EimaniH, SepehriH et al. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on resumption of meiosis, in vitro maturation and embryo development of immature mouse oocytes. Biofactors 33(2) , 149–155 (2008).
  • Gao L , LiY, PeiX, ChenX. [Effects of Di(2-ethylhexyl) phthalate(DEHP) on mouse embryos development in vitro]. Wei Sheng Yan Jiu32 , 198–200 (2003).
  • Yoshino S , YamakiK, LiX et al. Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. Immunology 112(3) , 489–495 (2004).
  • Zhou W , LiuJ, LiaoL, HanS, LiuJ. Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol. Cell Endocrinol.283 , 12–18 (2008).
  • Liu Y , BalaramanY, WangG, NephewKP, ZhouFC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics4(7) , 500–511 (2009).
  • Zhou R , ZhangZ, ZhuY et al. Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience 159(1) , 161–171 (2009).
  • Yu C , TaiF, SongZ et al. Pubertal exposure to bisphenol A disrupts behavior in adult C57BL/6J mice. Environ. Toxicol. Pharmacol. 31(1) , 88–99 (2011).
  • Yoshida M , ShimomotoT, KatashimaS et al. Maternal exposure to low doses of bisphenol a has no effects on development of female reproductive tract and uterine carcinogenesis in Donryu rats. J. Reprod. Dev. 50(3) , 349–360 (2004).
  • Yaoi T , ItohK, NakamuraK et al. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem. Biophys. Res. Commun. 376(3) , 563–567 (2008).
  • Ye L , ZhaoB, HuG, ChuY, GeRS. Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol. Lett.207(2) , 137–142 (2011).
  • Gore AC , WalkerDM, ZamaAM, ArmentiAE, UzumcuM. Early life exposure to endocrine-disrupting chemicals causes lifelong molecular reprogramming of the hypothalamus and premature reproductive aging. Mol. Endocrinol.25(12) , 2157–2168 (2011).
  • Speliotes EK , WillerCJ, BerndtSI et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42 , 937–948 (2010).
  • Scott LJ , MohlkeKL, BonnycastleLL et al. A genome-wide association study of Type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829) , 1341–1345 (2007).
  • Todd JL , GoldsteinDB, GeD, ChristieJ, PalmerSM. The state of genome-wide association studies in pulmonary disease: a new perspective. Am. J. Respir. Crit. Care Med.184(8) , 873–880 (2011).
  • Franke B , NealeBM, FaraoneSV. Genome-wide association studies in ADHD. Hum. Genet.126 , 13–50 (2009).
  • Devlin B , MelhemN, RoederK. Do common variants play a role in risk for autism? Evidence and theoretical musings. Brain Res.1380 , 78–84 (2011).
  • Wang X , PrinsBP, SõberS, LaanM, SniederH. Beyond genome-wide association studies: new strategies for identifying genetic determinants of hypertension. Curr. Hypertens. Rep.13(6) , 442–451 (2011).
  • Chung CC , ChanockSJ. Current status of genome-wide association studies in cancer. Hum. Genet.130 , 59–78(2011).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.