256
Views
2
CrossRef citations to date
0
Altmetric
Review

Epigenetics and Childhood Asthma: Current Evidence and Future Research Directions

, &
Pages 415-429 | Published online: 24 Aug 2012

References

  • Akinbami L . The state of childhood asthma, United States, 1980–2005. Adv. Data (381) , 1–24 (2006).
  • Lai CK , BeasleyR, CraneJ, FoliakiS, ShahJ, WeilandS. Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax64(6) , 476–483 (2009).
  • Torgerson DG , AmplefordEJ, ChiuGY et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse north American populations. Nat. Genet. 43(9) , 887–892 (2011).
  • Moffatt MF , GutIG, DemenaisF et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363(13) , 1211–1221 (2010).
  • Martinez FD . CD14, endotoxin, and asthma risk: actions and interactions. Proc. Am. Thorac. Soc.4(3) , 221–225 (2007).
  • London SJ . Gene-air pollution interactions in asthma. Proc. Am. Thorac. Soc.4(3) , 217–220 (2007).
  • Sunyer J , TorrentM, Munoz-OrtizL et al. Prenatal dichlorodiphenyldichloroethylene (DDE) and asthma in children. Environ. Health Perspect. 113(12) , 1787–1790 (2005).
  • Peden DB . The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol. Rev.242(1) , 91–105 (2011).
  • Strachan DP . Hay fever, hygiene, and household size. BMJ299(6710) , 1259–1260 (1989).
  • Strickland DH , HoltPG. T regulatory cells in childhood asthma. Trends Immunol.32(9) , 420–427 (2011).
  • Rudensky AY . Regulatory T cells and Foxp3. Immunol. Rev.241(1) , 260–268 (2011).
  • Cosmi L , LiottaF, MaggiE, RomagnaniS, AnnunziatoF. Th17 cells: new players in asthma pathogenesis. Allergy66(8) , 989–998 (2011).
  • Soroosh P , DohertyTA. Th9 and allergic disease. Immunology127(4) , 450–458 (2009).
  • Schaub B , LauenerR, von Mutius E. The many faces of the hygiene hypothesis. J. Allergy Clin. Immunol.117(5) , 969–977; quiz 978 (2006).
  • Minnicozzi M , SawyerRT, FentonMJ. Innate immunity in allergic disease. Immunol. Rev.242(1) , 106–127 (2011).
  • Hou L , ZhangX, WangD, BaccarelliA. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol.41(1) , 79–105 (2012).
  • Gardiner-Garden M , FrommerM. CpG islands in vertebrate genomes. J. Mol. Biol.196(2) , 261–282 (1987).
  • Takai D , JonesPA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99(6) , 3740–3745 (2002).
  • Irizarry RA , Ladd-AcostaC, WenB et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2) , 178–186 (2009).
  • Wu H , CaffoB, JaffeeHA, IrizarryRA, FeinbergAP. Redefining CpG islands using hidden Markov models. Biostatistics11(3) , 499–514 (2010).
  • Hackenberg M , PrevitiC, Luque-EscamillaPL, CarpenaP, Martinez-ArozaJ, OliverJL. CpGcluster: a distance-based algorithm for CpG-island detection. BMC Bioinformatics7 , 446 (2006).
  • Ponger L , MouchiroudD. CpGProD: identifying CpG islands associated with transcription start sites in large genomic mammalian sequences. Bioinformatics18(4) , 631–633 (2002).
  • Brenet F , MohM, FunkP et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE 6(1) , e14524 (2011).
  • Rauch TA , WuX, ZhongX, RiggsAD, PfeiferGP. A human B cell methylome at 100-base pair resolution. Proc. Natl Acad. Sci. USA106(3) , 671–678 (2009).
  • Miller RL , HoSM. Environmental epigenetics and asthma: current concepts and call for studies. Am. J. Respir. Crit. Care Med.177(6) , 567–573 (2008).
  • Perera F , TangWY, HerbstmanJ et al. Relation of DNA methylation of 5´-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE 4(2) , e4488 (2009).
  • Tang WY , LevinL, TalaskaG et al. Maternal exposure to polycyclic aromatic hydrocarbons and 5´-CpG methylation of interferon-γ in cord white blood cells. Environ. Health Perspect. doi: 10.1289/ehp.1103744 (2012) (Epub ahead of print).
  • Morales E , BustamanteM, VilahurN et al. DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood. Am. J. Respir. Crit. Care Med. 185(9) , 937–943 (2012).
  • Guxens M , BallesterF, EspadaM et al. Cohort profile: The INMA – infancia y medio ambiente – (environment and childhood) Project. Int. J. Epidemiol. doi:10.1093/ije/dyr054 (2011).
  • Isidoro-Garcia M , SanzC, Garcia-SolaesaV et al. PTGDR gene in asthma: a functional, genetic, and epigenetic study. Allergy66(12) , 1553–1562 (2011).
  • Flom JD , FerrisJS, LiaoY et al. Prenatal smoke exposure and genomic DNA methylation in a multiethnic birth cohort. Cancer Epidemiol. Biomarkers Prev. 20(12) , 2518–2523 (2011).
  • Breton CV , ByunHM, WentenM, PanF, YangA, GillilandFD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med.180(5) , 462–467 (2009).
  • Wilhelm-Benartzi CS , HousemanEA, MaccaniMA et al. In utero exposures, infant growth, and DNA methylation of repetitive element and developmentally related genes in human placenta. Environ. Health Perspect.120(2) , 296–302 (2011).
  • Suter M , MaJ, HarrisAS et al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 6(11) , 1284–1294 (2011).
  • Breton CV , SalamMT, GillilandFD. Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase. Epigenetics6(7) , 895–898 (2011).
  • Tarantini L , BonziniM, ApostoliP et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ. Health Perspect. 117(2) , 217–222 (2009).
  • Madrigano J , BaccarelliA, MittlemanMA et al. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ. Health Perspect. 119(7) , 977–982 (2011).
  • Baccarelli A , WrightRO, BollatiV et al. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 179(7) , 572–578 (2009).
  • Salam MT , ByunHM, LurmannF et al. Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J. Allergy Clin. Immunol. 129(1) , 232–239; E1–E7 (2012).
  • Breton CV , ByunHM, WangX, SalamMT, SiegmundK, GillilandFD. DNA methylation in the arginase-nitric oxide synthase pathway is associated with exhaled nitric oxide in children with asthma. Am. J. Respir. Crit. Care Med.184(2) , 191–197 (2011).
  • Baccarelli A , RusconiF, BollatiV et al. Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma. Epigenomics 4(1) , 91–100 (2012).
  • Nadeau K , McDonald-HymanC, NothEM et al. Ambient air pollution impairs regulatory T-cell function in asthma. J. Allergy Clin. Immunol. 126(4) , 845–852.e10 (2010).
  • Liu J , BallaneyM, Al-alemU et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol. Sci. 102(1) , 76–81 (2008).
  • Kwon NH , KimJS, LeeJY, OhMJ, ChoiDC. DNA methylation and the expression of IL-4 and IFN-γ promoter genes in patients with bronchial asthma. J. Clin. Immunol.28(2) , 139–146 (2008).
  • Hollingsworth JW , MaruokaS, BoonK et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Invest.118(10) , 3462–3469 (2008).
  • Fainaru O , ShseyovD, HantisteanuS, GronerY. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc. Natl Acad. Sci. USA102(30) , 10598–10603 (2005).
  • Fryer AA , NafeeTM, IsmailKM, CarrollWD, EmesRD, FarrellWE. LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study. Epigenetics4(6) , 394–398 (2009).
  • Fryer AA , EmesRD, IsmailKM et al. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6(1) , 86–94 (2011).
  • Michels KB , HarrisHR, BaraultL. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS ONE6(9) , e25254 (2011).
  • Han JS , SzakST, BoekeJD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature429(6989) , 268–274 (2004).
  • Schaub B , LiuJ, HopplerS et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol. 123(4) , 774–782.e5 (2009).
  • Liu J , LluisA, IlliS et al. T regulatory cells in cord blood – FOXP3 demethylation as reliable quantitative marker. PLoS ONE 5(10) , e13267 (2010).
  • Shi Y . Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet.8(11) , 829–833 (2007).
  • Pedersen MT , HelinK. Histone demethylases in development and disease. Trends Cell. Biol.20(11) , 662–671 (2010).
  • Grausenburger R , BilicI, BoucheronN et al. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J. Immunol. 185(6) , 3489–3497 (2010).
  • Choi JH , OhSW, KangMS, KwonHJ, OhGT, KimDY. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy35(1) , 89–96 (2005).
  • Yang SR , WrightJ, BauterM, SeweryniakK, KodeA, RahmanI. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-κB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am. J. Physiol. Lung Cell. Mol. Physiol.292(2) , L567–L576 (2007).
  • Kim SR , LeeKS, ParkSJ et al. Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease. J. Allergy Clin. Immunol. 125(2) , 449–460.e14 (2010).
  • Lee KY , ItoK, HayashiR, JazrawiEP, BarnesPJ, AdcockIM. NF-κB and activator protein 1 response elements and the role of histone modifications in IL-1β-induced TGF-β1 gene transcription. J. Immunol.176(1) , 603–615 (2006).
  • Gutcher I , DonkorMK, MaQ, RudenskyAY, FlavellRA, LiMO. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity34(3) , 396–408 (2011).
  • Qin H , WangL, FengT et al. TGF-β promotes Th17 cell development through inhibition of SOCS3. J. Immunol. 183(1) , 97–105 (2009).
  • Silverman ES , PalmerLJ, SubramaniamV et al. Transforming growth factor-β1 promoter polymorphism C-509T is associated with asthma. Am. J. Respir. Crit. Care Med. 169(2) , 214–219 (2004).
  • Salam MT , GaudermanWJ, McConnellR, LinPC, GillilandFD. Transforming growth factor-β1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma. Am. J. Respir. Crit. Care Med.176(12) , 1192–1199 (2007).
  • Ito K , LimS, CaramoriG et al. A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc. Natl Acad. Sci. USA 99(13) , 8921–8926 (2002).
  • Ito K , YamamuraS, Essilfie-QuayeS et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med. 203(1) , 7–13 (2006).
  • Li LB , LeungDY, MartinRJ, GolevaE. Inhibition of histone deacetylase 2 expression by elevated glucocorticoid receptor β in steroid-resistant asthma. Am. J. Respir. Crit. Care Med.182(7) , 877–883 (2010).
  • Butler CA , McQuaidS, TaggartCC et al. Glucocorticoid receptor β and histone deacetylase 1 and 2 expression in the airways of severe asthma. Thorax 67(5) , 392–398 (2012).
  • Ito K , LimS, CaramoriG, ChungKF, BarnesPJ, AdcockIM. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J.15(6) , 1110–1112 (2001).
  • Yang SR , ChidaAS, BauterMR et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-κB and posttranslational modifications of histone deacetylase in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291(1) , L46–L57 (2006).
  • Cosio BG , MannB, ItoK et al. Histone acetylase and deacetylase activity in alveolar macrophages and blood mononocytes in asthma. Am. J. Respir. Crit. Care Med. 170(2) , 141–147 (2004).
  • Adenuga D , YaoH, MarchTH, SeagraveJ, RahmanI. Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am. J. Respir. Cell. Mol. Biol.40(4) , 464–473 (2009).
  • Sundar IK , ChungS, HwangJW et al. Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-κB-dependent genes. PLoS ONE 7(2) , e31378 (2012).
  • Cao D , BrombergPA, SametJM. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am. J. Respir. Cell. Mol. Biol.37(2) , 232–239 (2007).
  • Wilson CB , RowellE, SekimataM. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol.9(2) , 91–105 (2009).
  • Brand S , TeichR, DickeT et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J. Allergy Clin. Immunol. 128(3) , 618–625.e1–7 (2011).
  • Balasubramanyam K , AltafM, VarierRA et al. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279(32) , 33716–33726 (2004).
  • Bushati N , CohenSM. MicroRNA functions. Annu. Rev. Cell. Dev. Biol.23 , 175–205 (2007).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2) , 281–297 (2004).
  • Lodish HF , ZhouB, LiuG, ChenCZ. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol.8(2) , 120–130 (2008).
  • Chen CZ , LiL, LodishHF, BartelDP. MicroRNAs modulate hematopoietic lineage differentiation. Science303(5654) , 83–86 (2004).
  • Baltimore D , BoldinMP, O‘ConnellRM, RaoDS, TaganovKD. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol.9(8) , 839–845 (2008).
  • O‘Neill LA , SheedyFJ, McCoyCE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol.11(3) , 163–175 (2011).
  • Bazzoni F , RossatoM, FabbriM et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl Acad. Sci. USA 106(13) , 5282–5287 (2009).
  • O‘Connell RM , TaganovKD, BoldinMP, ChengG, BaltimoreD. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA104(5) , 1604–1609 (2007).
  • Martinez-Nunez RT , LouafiF, FriedmannPS, Sanchez-ElsnerT. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J. Biol. Chem.284(24) , 16334–16342 (2009).
  • Louafi F , Martinez-NunezRT, Sanchez-ElsnerT. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J. Biol. Chem.285(53) , 41328–41336 (2010).
  • O‘Connell RM , KahnD, GibsonWS et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33(4) , 607–619 (2010).
  • Xie T , LiangJ, LiuN et al. MicroRNA-127 Inhibits lung inflammation by targeting IgG Fcγ receptor I. J. Immunol. 188(5) , 2437–2444 (2012).
  • Liu G , FriggeriA, YangY, ParkYJ, TsurutaY, AbrahamE. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc. Natl Acad. Sci. USA106(37) , 15819–15824 (2009).
  • Mayoral RJ , DehoL, RuscaN et al. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS ONE 6(10) , e26133 (2011).
  • Duan R , PakC, JinP. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum. Mol. Genet.16(9) , 1124–1131 (2007).
  • Nicolae D , CoxNJ, LesterLA et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am. J. Hum. Genet. 76(2) , 349–357 (2005).
  • Tan Z , RandallG, FanJ et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am. J. Hum. Genet. 81(4) , 829–834 (2007).
  • Su XW , YangY, LvML et al. Association between single-nucleotide polymorphisms in pre-miRNAs and the risk of asthma in a Chinese population. DNA Cell. Biol. 30(11) , 919–923 (2011).
  • Mohamed JS , LopezMA, BoriekAM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J. Biol. Chem.285(38) , 29336–29347 (2010).
  • Williams AE , Larner-SvenssonH, PerryMM et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS ONE 4(6) , e5889 (2009).
  • Lu TX , MunitzA, RothenbergME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol.182(8) , 4994–5002 (2009).
  • Chen RF , HuangHC, OuCY et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis. Clin. Exp. Allergy 40(10) , 1482–1490 (2010).
  • Chawes BL , BonnelykkeK, Kreiner-MollerE, BisgaardH. Children with allergic and nonallergic rhinitis have a similar risk of asthma. J. Allergy Clin. Immunol.126(3) , 567–573.e1–8 (2010).
  • Collison A , HerbertC, SiegleJS, MattesJ, FosterPS, KumarRK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm. Med.11 , 29 (2011).
  • Moschos SA , WilliamsAE, PerryMM, BirrellMA, BelvisiMG, LindsayMA. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics8 , 240 (2007).
  • Collison A , MattesJ, PlankM, FosterPS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J. Allergy Clin. Immunol.128(1) , 160–167.e4 (2011).
  • Chiba Y , TanabeM, GotoK, SakaiH, MisawaM. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am. J. Respir. Crit. Care Med.180(8) , 713–719 (2009).
  • Bollati V , MarinelliB, ApostoliP et al. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118(6) , 763–768 (2010).
  • Jardim MJ , FryRC, JaspersI, DaileyL, Diaz-SanchezD. Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ. Health Perspect.117(11) , 1745–1751 (2009).
  • Schembri F , SridharS, PerdomoC et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc. Natl Acad. Sci. USA 106(7) , 2319–2324 (2009).
  • Xi S , YangM, TaoY et al. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS ONE 5(10) , e13764 (2010).
  • Izzotti A , CalinGA, ArrigoP, SteeleVE, CroceCM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J.23(3) , 806–812 (2009).
  • Mattes J , CollisonA, PlankM, PhippsS, FosterPS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl Acad. Sci USA106(44) , 18704–18709 (2009).
  • Polikepahad S , KnightJM, NaghaviAO et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J. Biol. Chem. 285(39) , 30139–30149 (2010).
  • Garbacki N , Di Valentin E, Huynh-Thu VA et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS ONE6(1) , e16509 (2011).
  • Li N , HarkemaJR, LewandowskiRP et al. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. Am. J. Physiol. Lung Cell. Mol. Physiol. 299(3) , L374–L383 (2010).
  • Laird PW . Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet.11(3) , 191–203 (2010).
  • Harris RA , WangT, CoarfaC et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol. 28(10) , 1097–1105 (2010).
  • Taylor KH , KramerRS, DavisJW et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67(18) , 8511–8518 (2007).
  • Johnson WE , LiC, RabinovicA. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics8(1) , 118–127 (2007).
  • Adriaens ME , JaillardM, EijssenLM, MayerCD, EveloCT. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies. BMC Genomics13 , 42 (2012).
  • Sabbah C , MazoG, PaccardC, ReyalF, HupeP. SMETHILLIUM: spatial normalization method for Illumina infinium HumanMethylation BeadChip. Bioinformatics27(12) , 1693–1695 (2011).
  • Campan M , WeisenbergerDJ, TrinhB, LairdPW. MethyLight. Methods Mol. Biol.507 , 325–337 (2009).
  • Waterland RA , TravisanoM, TahilianiKG, RachedMT, MirzaS. Methyl donor supplementation prevents transgenerational amplification of obesity. Int. J. Obes. (Lond.)32(9) , 1373–1379 (2008).
  • Perera F , HerbstmanJ. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol.31(3) , 363–373 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.