430
Views
0
CrossRef citations to date
0
Altmetric
Special Report

DNA Demethylation by TDG

&
Pages 459-467 | Published online: 24 Aug 2012

References

  • Bird A . The essentials of DNA methylation. Cell70 , 5–8 (1992).
  • Kass SU , LandsbergerN, WolffeAP. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol.7 , 157–165 (1997).
  • Siegfried Z , CedarH. DNA methylation: a molecular lock. Curr. Biol.07 , R305–R307 (1997).
  • Li E , BestorTH, JaenischR. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69 , 915–926 (1992).
  • Okano M , BellDW, HaberDA et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99 , 247–257 (1999).
  • Feinberg AP , TyckoB. The history of cancer epigenetics. Nat. Rev. Cancer4 , 143–153 (2004).
  • Jones PA , LairdPW. Cancer epigenetics comes of age. Nat. Genet.21 , 163–167 (1999).
  • Mayer W , NiveleauA, WalterJ et al. Demethylation of the zygotic paternal genome. Nature 403 , 501–502 (2000).
  • Oswald J , EngemannS, LaneN et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10 , 475–478 (2000).
  • Reik W , DeanW, WalterJ. Epigenetic reprogramming in mammalian development. Science293 , 1089–1093 (2001).
  • Surani MA , HayashiK, HajkovaP. Genetic and epigenetic regulators of pluripotency. Cell128 , 747–762 (2007).
  • Kress C , ThomassinH, GrangeT. Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Lett.494 , 135–140 (2001).
  • Niehrs C . Active DNA demethylation and DNA repair. Differentiation77 , 1–11 (2009).
  • Guo JU , SuY, ZhongC et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145 , 423–434 (2011).
  • Ma DK , JangMH, GuoJU et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323 , 1074–1077 (2009).
  • Barreto G , SchaferA, MarholdJ et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445 , 671–675 (2007).
  • Niehrs C , SchaferA. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol.22(4) , 220–227 (2012).
  • Buontempo S , SannaiM, BellacosaA. MBD4/MED1 protein in DNA repair and demethylation, cancer, and other diseases. In: Cancer Epigenetics – Biomolecular Therapeutics for Human Cancer. Giordano A, Macaluso M (Eds). Wiley-Blackwell, NJ, USA, 145–162 (2012).
  • Rai K , HugginsIJ, JamesSR et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase and gadd45. Cell 135 , 1201–1212 (2008).
  • Choi Y , GehringM, JohnsonL et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110 , 33–42 (2002).
  • Gehring M , HuhJH, HsiehTF et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124 , 495–506 (2006).
  • Morales-Ruiz T , Ortega-GalisteoAP, Ponferrada-MarinMI et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl. Acad. Sci. USA 103 , 6853–6858 (2006).
  • Zheng X , PontesO, ZhuJ et al. ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455 , 1259–1262 (2008).
  • Zhu J , KapoorA, SridharVV et al. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 17 , 54–59 (2007).
  • Cortazar D , KunzC, SaitoY et al. The enigmatic thymine DNA glycosylase. DNA Repair (Amst.) 6 , 489–504 (2007).
  • Neddermann P , GallinariP, LettieriT et al. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 271 , 12767–12774 (1996).
  • Neddermann P , JiricnyJ. The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J. Biol. Chem.268 , 21218–21224 (1993).
  • Neddermann P , JiricnyJ. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc. Natl Acad. Sci. USA91 , 1642–1646 (1994).
  • Bellacosa A . Role of MED1 (MBD4) gene in DNA repair and human cancer. J. Cell. Physiol.187 , 137–144 (2001).
  • Bellacosa A , CicchillittiL, SchepisF et al. MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc. Natl Acad. Sci. USA 96 , 3969–3974 (1999).
  • Hendrich B , HardelandU, NgHH et al. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401 , 301–304 (1999).
  • Petronzelli F , RiccioA, MarkhamGD et al. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J. Biol. Chem. 275 , 32422–32429 (2000).
  • Um S , HarbersM, BeneckeA et al. Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 273 , 20728–20736 (1998).
  • Chen D , LuceyMJ, PhoenixF et al. T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor α. J. Biol. Chem. 278 , 38586–38592 (2003).
  • Chevray PM , NathansD. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl Acad. Sci. USA89 , 5789–5793 (1992).
  • Missero C , PirroMT, SimeoneS et al. The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. J. Biol. Chem. 276 , 33569–33575 (2001).
  • Tini M , BeneckeA, UmSJ et al. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol. Cell. 9 , 265–277 (2002).
  • Lucey MJ , ChenD, Lopez-GarciaJ et al. T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif. Nucleic Acids Res. 33 , 6393–6404 (2005).
  • Jost JP , SiegmannM, SunL et al. Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J. Biol. Chem. 270 , 9734–9739 (1995).
  • Zhu B , BenjaminD, ZhengY et al. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc. Natl Acad. Sci. USA 98 , 5031–5036 (2001).
  • Zhu B , ZhengY, HessD et al. 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc. Natl Acad. Sci. USA 97 , 5135–5139 (2000).
  • Kangaspeska S , StrideB, MetivierR et al. Transient cyclical methylation of promoter DNA. Nature 452 , 112–115 (2008).
  • Metivier R , GallaisR, TiffocheC et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452 , 45–50 (2008).
  • Li YQ , ZhouPZ, ZhengXD et al. Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair. Nucleic Acids Res. 35 , 390–400 (2007).
  • Boland MJ , ChristmanJK. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. J. Mol. Biol.379 , 492–504 (2008).
  • Cortazar D , KunzC, SelfridgeJ et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470 , 419–423 (2011).
  • Cortellino S , XuJ, SannaiM et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146 , 67–79 (2011).
  • Saito Y , OnoT, TakedaN et al. Embryonic lethality in mice lacking mismatch-specific thymine DNA glycosylase is partially prevented by DOPS, a precursor of noradrenaline. Tohoku J. Exp. Med. 226 , 75–83 (2012).
  • Mark M , GhyselinckNB, ChambonP. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol.46 , 451–480 (2006).
  • Tanaka Y , NaruseI, HongoT et al. Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech. Dev. 95 , 133–145 (2000).
  • Vermot J , NiederreitherK, GarnierJM et al. Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc. Natl Acad. Sci. USA 100 , 1763–1768 (2003).
  • Yao TP , OhSP, FuchsM et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93 , 361–372 (1998).
  • Lim KC , LakshmananG, CrawfordSE et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat. Genet. 25 , 209–212 (2000).
  • Thomas SA , MatsumotoAM, PalmiterRD. Noradrenaline is essential for mouse fetal development. Nature374 , 643–646 (1995).
  • Zhou QY , QuaifeCJ, PalmiterRD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature374 , 640–643 (1995).
  • Kobayashi K , MoritaS, SawadaH et al. Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J. Biol. Chem. 270 , 27235–27243 (1995).
  • Hardeland U , BenteleM, JiricnyJ et al. Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis. J. Biol. Chem. 275 , 33449–33456 (2000).
  • Ito S , D‘alessioAC, TaranovaOV et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466 , 1129–1133 (2010).
  • Tahiliani M , KohKP, ShenY et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 , 930–935 (2009).
  • Ono R , TakiT, TaketaniT et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62 , 4075–4080 (2002).
  • Lorsbach RB , MooreJ, MathewS et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17 , 637–641 (2003).
  • Bejar R , LevineR, EbertBL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J. Clin. Oncol.29 , 504–515 (2011).
  • Bennett MT , RodgersMT, HebertAS et al. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J. Am. Chem. Soc. 128 , 12510–12519 (2006).
  • Hardeland U , BenteleM, JiricnyJ et al. The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res. 31 , 2261–2271 (2003).
  • He YF , LiBZ, LiZ et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333 , 1303–1307 (2011).
  • Ito S , ShenL, DaiQ et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333 , 1300–1303 (2011).
  • Pfaffeneder T , HacknerB, TrussM et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. Engl. 50 , 7008–7012 (2011).
  • Maiti A , DrohatAC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem.286 , 35334–35338 (2011).
  • Zhang L , LuX, LuJ et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 8 , 328–330 (2012).
  • Kim MS , KondoT, TakadaI et al. DNA demethylation in hormone-induced transcriptional derepression. Nature 461 , 1007–1012 (2009).
  • Peng B , HurtEM, HodgeDR et al. DNA hypermethylation and partial gene silencing of human thymine- DNA glycosylase in multiple myeloma cell lines. Epigenetics 1 , 138–145 (2006).
  • Yatsuoka T , FurukawaT, AbeT et al. Genomic analysis of the thymine-DNA glycosylase (TDG) gene on 12q22-q24.1 in human pancreatic ductal adenocarcinoma. Int. J. Pancreatol. 25 , 97–102 (1999).
  • Vasovcak P , KrepelovaA, MenigattiM et al. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency. DNA Repair 11(7) , 616–623 (2012).
  • Thillainadesan G , ChitilianJM, IsovicM et al. TGF-β-dependent active demethylation and expression of the p15(ink4b) tumor suppressor are impaired by the ZNF217/CoREST complex. Mol. Cell 46(5) , 636–649 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.