334
Views
0
CrossRef citations to date
0
Altmetric
Review

Sensitive Periods in Epigenetics: Bringing us Closer to Complex Behavioral Phenotypes

&
Pages 445-457 | Published online: 24 Aug 2012

References

  • Klein RJ , ZeissC, ChewEY et al. Complement factor H polymorphism in age-related macular degeneration. Science 308(5720) , 385–389 (2005).
  • Craddock N , O‘DonovanM, OwenM. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J. Med. Genet.42(3) , 193–204 (2005).
  • Harrison PJ , WeinbergerDR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry10(1) , 40–68 (2005).
  • Li Y , DingG, Booth Jr et al. Sensitive period for white-matter connectivity of superior temporal cortex in deaf people. Hum. Brain Mapp.33(2) , 349–359 (2012).
  • Pimperton H , KennedyCR. The impact of early identification of permanent childhood hearing impairment on speech and language outcomes. Arch. Dis. Child.97(7) , 648–653 (2012).
  • Bailey J , PenhuneV. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Exp. Brain Res.204(1) , 91–101 (2010).
  • Bailey J , PenhuneVB. A sensitive period for musical training: contributions of age of onset and cognitive abilities. Ann. NY Acad. Sci.1252(1) , 163–170 (2012).
  • Watanabe D , Savion-LemieuxT, PenhuneV. The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning. Exp. Brain Res.176(2) , 332–340 (2007).
  • Knudsen EI . Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci.16(8) , 1412–1425 (2004).
  • McCarthy M , AugerA, BaleT et al. The epigenetics of sex differences in the brain. J. Neurosci. 29(41) , 12815–12838 (2009).
  • Weaver IC , CervoniN, ChampagneFA et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7(8) , 847–854 (2004).
  • Skinner M . Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics6(7) , 838–880 (2011).
  • Faulk C , DolinoyD. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics6(7) , 791–798 (2011).
  • Waterland R , JirtleR. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol.23(15) , 5293–5593 (2003).
  • Lillycrop KA , Slater-JefferiesJL, HansonMA, GodfreyKM, JacksonAA, BurdgeGC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br. J. Nutr.97(6) , 1064–1073 (2007).
  • Liu D , DiorioJ, TannenbaumB et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277(5332) , 1659–1721 (1997).
  • Suomi SJ . Early stress and adult emotional reactivity in rhesus monkeys. Ciba Found. Symp.156 , 171–183; discussion 183–178 (1991).
  • Weaver IC , DiorioJ, SecklJR, SzyfM, MeaneyMJ. Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann. NY Acad. Sci.1024 , 182–212 (2004).
  • Zhang TY , HellstromIC, BagotRC, WenXL, DiorioJ, MeaneyMJ. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J. Neurosci.30(39) , 13130–13137 (2010).
  • Roth TL , LubinFD, FunkAJ, SweattJD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry65(9) , 760–769 (2009).
  • Murgatroyd C , PatchevAV, WuY et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 12(12) , 1559–1566 (2009).
  • Fagiolini M , JensenC, ChampagneF. Epigenetic influences on brain development and plasticity. Curr. Opin. Neurobiol.19(2) , 207–212 (2009).
  • McGowan P , SasakiA, D‘alessioA et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12(3) , 342–350 (2009).
  • Radtke K , RufM, GunterH et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 1(7) , e21 (2011).
  • Tyrka A , PriceL, MarsitC, WaltersO, CarpenterL. Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS ONE7(1) , e30148 (2012).
  • Perroud N , BaudP, MouthonD, CourtetP, MalafosseA. Impulsivity, aggression and suicidal behavior in unipolar and bipolar disorders. J. Affect. Disord.134(1–3) , 112–118 (2011).
  • Labonte B , YerkoV, GrossJ et al. Differential glucocorticoid receptor exon 1B, 1C and 1H expression and methylation in suicide completers with a history of childhood abuse. Biol. Psychiatry 72(1) , 41–48 (2012).
  • Labonte B , SudermanM, MaussionG et al. Genome-wide epigenetic regulation by early-life trauma. Arch. Gen. Psychiatry (2012) (In Press).
  • Sharma R , GavinD, GraysonD. CpG methylation in neurons: message, memory, or mask? Neuropsychopharmacology35(10) , 2009–2029 (2010).
  • Bredy T , ZhangT, GrantR, DiorioJ, MeaneyM. Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. Eur. J. Neurosci.20(5) , 1355–1362 (2004).
  • Ingrosso D , CimminoA, PernaAF et al. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361(9370) , 1693–1699 (2003).
  • Weaver I , ChampagneF, BrownS et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 25(47) , 11045–11099 (2005).
  • Elliott E , Ezra-NevoG, RegevL, Neufeld-CohenA, ChenA. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci.13(11) , 1351–1354 (2010).
  • Uchida S , HaraK, KobayashiA et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 69(2) , 359–431 (2011).
  • Guo J , MaD, MoH et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 14(10) , 1345–1396 (2011).
  • Kinney S , PradhanS. Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells. Prog. Mol. Biol. Transl. Sci.101 , 311–333 (2011).
  • Guibert S , FornéT, WeberM. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res.22(4) , 633–641 (2012).
  • Reik W , DeanW, WalterJ. Epigenetic reprogramming in mammalian development. Science293(5532) , 1089–1093 (2001).
  • Metzger E , WissmannM, YinN et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057) , 436–445 (2005).
  • Tsukada YI , FangJ, Erdjument-BromageH et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078) , 811–817 (2006).
  • Kriaucionis S , HeintzN. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324(5929) , 929–930 (2009).
  • Gotlib I , HamiltonJ. Bringing genetics back to psychiatric endophenotypes. Biol. Psychiatry71(1) , 2–5 (2012).
  • He YF , LiBZ, LiZ et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047) , 1303–1307 (2011).
  • Ito S , D‘alessioA, TaranovaO, HongK, SowersL, ZhangY. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature466(7310) , 1129–1162 (2010).
  • Alarcón J , MalleretG, TouzaniK et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42(6) , 947–1006 (2004).
  • Vecsey C , HawkJ, LattalK et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27(23) , 6128–6168 (2007).
  • Korzus E , RosenfeldM, MayfordM. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron42(6) , 961–1033 (2004).
  • Fischer A , SananbenesiF, WangX, DobbinM, TsaiLH. Recovery of learning and memory is associated with chromatin remodelling. Nature447(7141) , 178–260 (2007).
  • Bredy T , WuH, CregoC, ZellhoeferJ, SunY, BaradM. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem.14(4) , 268–344 (2007).
  • Lubin F , RothT, SweattJ. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci.28(42) , 10576–10662 (2008).
  • Miller C , SweattJ. Covalent modification of DNA regulates memory formation. Neuron53(6) , 857–926 (2007).
  • Lee C , MaY, LeeE. Serum- and glucocorticoid-inducible kinase1 enhances contextual fear memory formation through down-regulation of the expression of Hes5. J. Neurochem.100(6) , 1531–1573 (2007).
  • Mueller B , BaleT. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci.28(36) , 9055–9120 (2008).
  • Champagne F , WeaverI, DiorioJ, DymovS, SzyfM, MeaneyM. Maternal care associated with methylation of the estrogen receptor-α1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring. Endocrinology147(6) , 2909–2924 (2006).
  • Weaver IC , D‘AlessioAC, BrownSE et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J. Neurosci. 27(7) , 1756–1768 (2007).
  • Oberlander T , WeinbergJ, PapsdorfM, GrunauR, MisriS, DevlinA. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics3(2) , 97–203 (2008).
  • Lopez JP , MamdaniF, LabonteB et al. Epigenetic regulation of BDNF expression according to antidepressant response. Mol. Psychiatry doi:10.1038/mp.2012.38 (2012) (Epub ahead of print).
  • Uddin M , AielloA, WildmanD et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl Acad. Sci. USA 107(20) , 9470–9475 (2010).
  • Bromberg A , BersudskyY, LevineJ, AgamG. Global leukocyte DNA methylation is not altered in euthymic bipolar patients. J. Affect. Disord.118(1–3) , 234–243 (2009).
  • Dempster E , PidsleyR, SchalkwykL et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20(24) , 4786–4882 (2011).
  • Nagarajan RP , PatzelKA, MartinM et al. MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res. 1(3) , 169–178 (2008).
  • Grayson D , JiaX, ChenY et al. Reelin promoter hypermethylation in schizophrenia. Proc. Natl Acad. Sci. USA 102(26) , 9341–9347 (2005).
  • Tochigi M , IwamotoK, BundoM et al. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol. Psychiatry 63(5) , 530–533 (2008).
  • Iwamoto K , BundoM, YamadaK et al. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J. Neurosci. 25(22) , 5376–5457 (2005).
  • Huang HS , AkbarianS. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS ONE2(8) , e809 (2007).
  • Fiori L , TureckiG. Epigenetic regulation of spermidine/spermine N1-acetyltransferase (SAT1) in suicide. J. Psychiatr. Res.45(9) , 1229–1264 (2011).
  • Poulter M , DuL, WeaverI et al. GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol.Psychiatry 64(8) , 645–697 (2008).
  • Ernst C , ChenE, TureckiG. Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. Mol. Psychiatry14(9) , 830–832 (2009).
  • Dwivedi Y , RizaviH, ConleyR, RobertsR, TammingaC, PandeyG. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry60(8) , 804–819 (2003).
  • Keller S , SarchiaponeM, ZarrilliF et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch. Gen. Psychiatry 67(3) , 258–267 (2010).
  • Chen GG , FioriLM, MoquinL et al. Evidence of altered polyamine concentrations in cerebral cortex of suicide completers. Neuropsychopharmacology 35(7) , 1477–1484 (2010).
  • Tsankova N , BertonO, RenthalW, KumarA, NeveR, NestlerE. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci.9(4) , 519–544 (2006).
  • Smalheiser NR , LugliG, RizaviHS, TorvikVI, TureckiG, DwivediY. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS ONE7(3) , e33201 (2012).
  • Serafini G , PompiliM, InnamoratiM et al. The role of microRNAs in synaptic plasticity, major affective disorders and suicidal behavior. Neurosci. Res. 73(3) , 179–190 (2012).
  • Waddington CH . Canalization of development and the inheritance of acquired characters. Nature150(3811) , 563–1128 (1942).
  • Queitsch C , SangsterTA, LindquistS. Hsp90 as a capacitor of phenotypic variation. Nature417(6889) , 618–624 (2002).
  • Rutherford S , LindquistS. Hsp90 as a capacitor for morphological evolution. Nature396(6709) , 336–378 (1998).
  • Holliday R , PughJ. DNA modification mechanisms and gene activity during development. Science187(4173) , 226–258 (1975).
  • Johnson TB , CoghillRD. Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus1. J. Am. Chem. Soc.47(11) , 2838–5682 (1925).
  • Wyatt G . Occurrence of 5-methylcytosine in nucleic acids. Nature166(4214) , 237–245 (1950).
  • Riggs AD . X inactivation, differentiation, and DNA methylation. Cytogenet. Cell. Genet.14(1) , 9–25 (1975).
  • Holliday R . A new theory of carcinogenesis. Br. J. Cancer40(4) , 513–522 (1979).
  • Wang Y , LeungFCC. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics20(7) , 1170–1177 (2004).
  • Bird AP , WolffeAP. Methylation-induced repression – belts, braces, and chromatin. Cell99(5) , 451–454 (1999).
  • Watt F , MolloyPL. Cytosine methylation prevents binding to DNA of a Hela-cell transcription factor required for optimal expression of the adenovirus major late promoter. Gene Dev.2(9) , 1136–1143 (1988).
  • Newell-Price J , ClarkAJ, KingP. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab.11(4) , 142–148 (2000).
  • Kim J , SamaranayakeM, PradhanS. Epigenetic mechanisms in mammals. Cell. Mol. Life Sci.66(4) , 596–1208 (2009).
  • Monk M . Genomic imprinting. Genes Dev.2(8) , 921–925 (1988).
  • Choudhuri S . From Waddington‘s epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research. Toxicol. Mech. Methods21(4) , 252–326 (2011).
  • Machado-Vieira R , IbrahimL, ZarateCA Jr. Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci. Ther.17(6) , 699–704 (2011).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4) , 693–1398 (2007).
  • Strahl BD , AllisCD. The language of covalent histone modifications. Nature403(6765) , 41–45 (2000).
  • Mohamed Ariff I , MitraA, BasuA. Epigenetic regulation of self-renewal and fate determination in neural stem cells. J. Neurosci. Res.90(3) , 529–568 (2012).
  • Challen G , SunD, JeongM et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44(1) , 23–54 (2011).
  • Shimozaki K , NamihiraM, NakashimaK, TagaT. Stage- and site-specific DNA demethylation during neural cell development from embryonic stem cells. J. Neurochem.93(2) , 432–439 (2005).
  • Pedersen KS , BamletWR, ObergAL et al. Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS ONE 6(3) , e18223 (2011).
  • Sapienza C , LeeJ, PowellJ et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6(1) , 20–28 (2011).
  • Ursini G , BollatiV, FazioL et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J. Neurosci. 31(18) , 6692–6698 (2011).
  • Kaminsky Z , TochigiM, JiaP et al. A multi-tissue analysis identifies HLA complex group 9 gene ethylation differences in bipolar disorder. Mol Psychiatry 17(7) , 728–740 (2011).
  • Iwamoto K , BundoM, UedaJ et al. Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Res. 21(5) , 688–696 (2011).
  • Deb-Rinker P , LyD, JezierskiA, SikorskaM, WalkerP. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J. Biol. Chem.280(8) , 6257–6260 (2005).
  • Lv J , LiuH, SuJ et al. DiseaseMeth: a human disease methylation database. Nucleic Acids Res. 40(Database issue) , D1030–D1035 (2011).
  • Xin Y , ChanrionB, O‘DonnellA et al. MethylomeDB: a database of DNA methylation profiles of the brain. Nucleic Acids Res. 40(Database issue) , D1245–D1249 (2011).
  • Lienert F , WirbelauerC, SomI, DeanA, MohnF, SchübelerD. Identification of genetic elements that autonomously determine DNA methylation states. Nat. Genet.43(11) , 1091–1098 (2011).
  • Pastinen T , SladekR, GurdS et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16(2) , 184–193 (2004).
  • Fraga M , BallestarE, PazM et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102(30) , 10604–10613 (2005).
  • Bollati V , SchwartzJ, WrightR et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 130(4) , 234–239 (2009).
  • Madrigano J , BaccarelliA, MittlemanMA et al. Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics 7(1) , 1085–1094 (2012).
  • Martino DJ , TulicMK, GordonL et al. Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics 6(9) , 1085–1094 (2011).
  • Busuttil RA , GarciaAM, ReddickRL et al. Intra-organ variation in age-related mutation accumulation in the mouse. PLoS ONE 2(9) , e876 (2007).
  • Rodriguez-Rodero S , Fernandez-MoreraJL, FernandezAF, Menendez-TorreE, FragaMF. Epigenetic regulation of aging. Discov. Med.10(52) , 225–233 (2010).
  • Esteller M . Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur. J. Cancer36(18) , 2294–2300 (2000).
  • Agrawal A , TayJ, YangGE, AgrawalS, GuptaS. Age-associated epigenetic modifications in human DNA increase its immunogenicity. Aging2(2) , 93–100 (2010).
  • Wierda RJ , GeutskensSB, JukemaJW, QuaxPH, van den Elsen PJ. Epigenetics in atherosclerosis and inflammation. J. Cell. Mol. Med.14(6A) , 1225–1240 (2010).
  • Garcia SN , Pereira-SmithO. MRGing chromatin dynamics and cellular senescence. Cell. Biochem. Biophys.50(3) , 133–141 (2008).
  • Weaver I , MeaneyM, SzyfM. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl Acad. Sci. USA103(9) , 3480–3485 (2006).
  • Klempan T , ErnstC, DelevaV, LabonteB, TureckiG. Characterization of QKI gene expression, genetics, and epigenetics in suicide victims with major depressive disorder. Biol. Psychiatry66(9) , 824–855 (2009).
  • Onishchenko N , KarpovaN, SabriF, CastrénE, CeccatelliS. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J. Neurochem.106(3) , 1378–1465 (2008).
  • Jakobsson J , CorderoM, BisazR et al. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 60(5) , 818–849 (2008).
  • Daniels W , FairbairnL, Van Tilburg G et al. Maternal separation alters nerve growth factor and corticosterone levels but not the DNA methylation status of the exon 1(7) glucocorticoid receptor promoter region. Metab. Brain Dis.24(4) , 615–642 (2009).
  • Roth T , LubinF, FunkA, SweattJ. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry65(9) , 760–769 (2009).
  • Alter MD , RubinDB, RamseyK et al. Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior. PLoS ONE 03(10) , e3344 (2008).
  • Hager R , CheverudJM, WolfJB. Change in maternal environment induced by cross-fostering alters genetic and epigenetic effects on complex traits in mice. Proc. Biol. Sci.276(1669) , 2949–2954 (2009).
  • Mcgowan P , SasakiA, HuangT et al. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS ONE 03(5) , e2085 (2008).
  • Ernst C , DelevaV, DengX et al. Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch. Gen. Psychiatry 66(1) , 22–54 (2009).
  • Guipponi M , DeutschS, KohlerK et al. Genetic and epigenetic analysis of SSAT gene dysregulation in suicidal behavior. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B(6) , 799–1606 (2009).
  • Fiori L , GrossJ, TureckiG. Effects of histone modifications on increased expression of polyamine biosynthetic genes in suicide. Int. J. Neuropsychopharmacol.19 , 1–6 (2011).
  • Chertkow-Deutsher Y , CohenH, KleinE, Ben-ShacharD. DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. Int. J.Neuropsychopharmacol.13(3) , 347–406 (2010).
  • Roth TL , ZoladzPR, SweattJD, DiamondDM. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J. Psychiatr. Res.45(7) , 919–926 (2011).
  • Mill J , TangT, KaminskyZ et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 82(3) , 696–1407 (2008).
  • Huang HS , MatevossianA, WhittleC et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J. Neurosci. 27(42) , 11254–11316 (2007).
  • Burmistrova OA , GoltsovAY, AbramovaLI, KaledaVG, OrlovaVA, RogaevEI. MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Mosc.).72(5) , 578–582 (2007).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.