381
Views
0
CrossRef citations to date
0
Altmetric
Review

miRNAs as Mediators of Drug Resistance

&
Pages 369-381 | Published online: 24 Aug 2012

References

  • Szyf M . The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics6(8) , 971–978 (2011).
  • Lima SC , Hernandez-VargasH, HercegZ. Epigenetic signatures in cancer: implications for the control of cancer in the clinic. Curr. Opin. Mol. Ther.12(3) , 316–324 (2010).
  • Pirola L , BalcerczykA, OkabeJ, El-OstaA. Epigenetic phenomena linked to diabetic complications. Nat. Rev. Endocrinol.6(12) , 665–675 (2010).
  • Marques SC , OliveiraCR, PereiraCM, OuteiroTF. Epigenetics in neurodegeneration: a new layer of complexity. Prog. Neuropsychopharmacol. Biol. Psychiatry35(2) , 348–355 (2011).
  • Dong E , GraysonDR, GuidottiA, CostaE. Antipsychotic subtypes can be characterized by differences in their ability to modify GABAergic promoter methylation. Epigenomics1(1) , 201–211 (2009).
  • Crea F , NobiliS, PaolicchiE et al. Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist. Updat. 14(6) , 280–296 (2011).
  • Starkey Lewis PJ , DearJ, PlattV et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54(5) , 1767–1776 (2011).
  • Hashimoto H , TakamiY, SonodaE et al. Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res. 38(11) , 3533–3545 (2010).
  • Sharma S , KellyTK, JonesPA. Epigenetics in cancer. Carcinogenesis31(1) , 27–36 (2010).
  • Kulis M , EstellerM. DNA methylation and cancer. Adv. Genet.70 , 27–56 (2010).
  • Vire E , BrennerC, DeplusR et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078) , 871–874 (2006).
  • Sansom OJ , MaddisonK, ClarkeAR. Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer. Nat. Clin. Pract. Oncol.4(5) , 305–315 (2007).
  • Szyf M . Epigenetics, DNA methylation, and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol.49 , 243–263 (2009).
  • Suzuki Y , YanagisawaM, ArigaT, YuRK. Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J. Neurochem.116(5) , 874–880 (2011).
  • Gore SD . Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies. Nat. Clin. Pract. Oncol.2(Suppl. 1) , S30–S35 (2005).
  • Mann BS , JohnsonJR, CohenMH, JusticeR, PazdurR. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist12(10) , 1247–1252 (2007).
  • Hrzenjak A , MoinfarF, KremserML et al. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol. Cancer Ther. 5(9) , 2203–2210 (2006).
  • Mohammed TA , HolenKD, Jaskula-SztulR et al. A pilot Phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist 16(6) , 835–843 (2011).
  • Scherpereel A , BerghmansT, LafitteJJ et al. Valproate-doxorubicin: promising therapy for progressing mesothelioma. A Phase II study. Eur. Respir. J. 37(1) , 129–135 (2011).
  • Thomas S , ThurnKT, BicakuE, MarchionDC, MunsterPN. Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy. Breast Cancer Res. Treat.130(2) , 437–447 (2011).
  • Sekita S , YoshihiraK, NatoriS et al. Mycotoxin production by Chaetomium spp. and related fungi. Can. J. Microbiol. 27(8) , 766–772 (1981).
  • Greiner D , BonaldiT, EskelandR, RoemerE, ImhofA. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol.1(3) , 143–145 (2005).
  • Chaib H , NebbiosoA, PrebetT et al. Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26(4) , 662–674 (2011).
  • Bernhard W , BarretoK, SaundersA, DahabiehMS, JohnsonP, SadowskiI. The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Lett.585(22) , 3549–3554 (2011).
  • Wang J , LuF, RenQ et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res. 71(23) , 7238–7249 (2011).
  • Chen Y , JieW, YanW, ZhouK, XiaoY. Lysine-specific histone demethylase 1 (LSD1): A potential molecular target for tumor therapy. Crit Rev. Eukaryot. Gene Expr.22(1) , 53–59 (2012).
  • Singh MM , MantonCA, BhatKP et al. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro. Oncol. 13(8) , 894–903 (2011).
  • Racz Z , KaucsarT, HamarP. The huge world of small RNAs: regulating networks of microRNAs (review). Acta Physiol Hung.98(3) , 243–251 (2011).
  • Skalsky RL , CullenBR. Viruses, microRNAs, and host interactions. Annu. Rev. Microbiol.64 , 123–141 (2010).
  • Wiemer EA . The role of microRNAs in cancer: no small matter. Eur. J. Cancer43(10) , 1529–1544 (2007).
  • Eiring AM , HarbJG, NevianiP et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140(5) , 652–665 (2010).
  • Bao N , LyeKW, BartonMK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell7(5) , 653–662 (2004).
  • Poliseno L , SalmenaL, ZhangJ, CarverB, HavemanWJ, PandolfiPP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature465(7301) , 1033–1038 (2010).
  • Lovat F , ValeriN, CroceCM. MicroRNAs in the pathogenesis of cancer. Semin. Oncol.38(6) , 724–733 (2011).
  • Ferland-McCollough D , OzanneSE, SiddleK, WillisAE, BushellM. The involvement of microRNAs in Type 2 diabetes. Biochem. Soc. Trans.38(6) , 1565–1570 (2010).
  • Salta E , De Strooper B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol.11(2) , 189–200 (2012).
  • Hatziapostolou M , IliopoulosD. Epigenetic aberrations during oncogenesis. Cell Mol. Life Sci.68(10) , 1681–1702 (2011).
  • Smits M , MirSE, NilssonRJ et al. Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS ONE 6(1) , e16282 (2011).
  • Nana-Sinkam SP , CroceCM. Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol. Oncol.5(6) , 483–491 (2011).
  • Kovalchuk O , FilkowskiJ, MeservyJ et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther. 7(7) , 2152–2159 (2008).
  • Li Z , HuS, WangJ et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol. Oncol. 119(1) , 125–130 (2010).
  • Zhu H , WuH, LiuX et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem. Pharmacol. 76(5) , 582–588 (2008).
  • Zhang H , LiM, HanY et al. Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig. Dis. Sci. 55(9) , 2545–2551 (2010).
  • Feng DD , ZhangH, ZhangP et al. Down-regulated miR-331–5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J. Cell Mol. Med. 15(10) , 2164–2175 (2011).
  • Li X , PanYZ, SeigelGM, HuZH, HuangM, YuAM. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem. Pharmacol.81(6) , 783–792 (2011).
  • Liao R , SunJ, ZhangL et al. MicroRNAs play a role in the development of human hematopoietic stem cells. J. Cell Biochem. 104(3) , 805–817 (2008).
  • Pan YZ , MorrisME, YuAM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol.75(6) , 1374–1379 (2009).
  • To KK , ZhanZ, LitmanT, BatesSE. Regulation of ABCG2 expression at the 3´ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol. Cell Biol.28(17) , 5147–5161 (2008).
  • To KK , RobeyRW, KnutsenT, ZhanZ, RiedT, BatesSE. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol. Cancer Ther.8(10) , 2959–2968 (2009).
  • Turrini E , HaenischS, LaecheltS, DiewockT, BruhnO, CascorbiI. MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet. Genomics22(3) , 198–205 (2012).
  • Liang Z , WuH, XiaJ et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem. Pharmacol. 79(6) , 817–824 (2010).
  • Pogribny IP , FilkowskiJN, TryndyakVP, GolubovA, ShpylevaSI, KovalchukO. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer127(8) , 1785–1794 (2010).
  • Jeon HM , SohnYW, OhSY et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res. 71(9) , 3410–3421 (2011).
  • Zhu Y , YuF, JiaoY et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin. Cancer Res. 17(22) , 7105–7115 (2011).
  • Pan YZ , GaoW, YuAM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos.37(10) , 2112–2117 (2009).
  • Subramanian S , SteerCJ. MicroRNAs as gatekeepers of apoptosis. J. Cell Physiol223(2) , 289–298 (2010).
  • Tomokuni A , EguchiH, TomimaruY et al. miR-146a suppresses the sensitivity to interferon-alpha in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 414(4) , 675–680 (2011).
  • Wang ZX , LuBB, WangH, ChengZX, YinYM. MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch. Med. Res.42(4) , 281–290 (2011).
  • Bai H , XuR, CaoZ, WeiD, WangC. Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett.585(2) , 402–408 (2011).
  • Gong C , YaoY, WangY et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J. Biol. Chem. 286(21) , 19127–19137 (2011).
  • Tarasov V , JungP, VerdoodtB et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13) , 1586–1593 (2007).
  • Zenz T , MohrJ, ElderingE et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113(16) , 3801–3808 (2009).
  • Vogt M , MundingJ, GrunerM et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458(3) , 313–322 (2011).
  • Kojima K , FujitaY, NozawaY, DeguchiT, ItoM. MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate70(14) , 1501–1512 (2010).
  • le Sage C , NagelR, EganDA et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26(15) , 3699–3708 (2007).
  • Miller TE , GhoshalK, RamaswamyB et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283(44) , 29897–29903 (2008).
  • Zhao JJ , LinJ, YangH et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283(45) , 31079–31086 (2008).
  • Rao X , Di Leva G, Li M et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene30(9) , 1082–1097 (2011).
  • Xia L , ZhangD, DuR et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 123(2) , 372–379 (2008).
  • Li H , HuiL, XuW. miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim. Biophys. Sin. (Shanghai)44(3) , 269–277 (2012).
  • Zhu W , ShanX, WangT, ShuY, LiuP. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer127(11) , 2520–2529 (2010).
  • Zhu W , XuH, ZhuD et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol. 69(3) , 723–731 (2012).
  • Zhu W , ZhuD, LuS et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med.Oncol. 29(1) , 384–391 (2012).
  • Gunaratne PH . Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr. Stem Cell Res. Ther.4(3) , 168–177 (2009).
  • Liu C , TangDG. MicroRNA regulation of cancer stem cells. Cancer Res.71(18) , 5950–5954 (2011).
  • Yu F , YaoH, ZhuP et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6) , 1109–1123 (2007).
  • Shimono Y , ZabalaM, ChoRW et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3) , 592–603 (2009).
  • Tryndyak VP , BelandFA, PogribnyIP. E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int. J. Cancer126(11) , 2575–2583 (2010).
  • Choudhry H , CattoJW. Epigenetic regulation of microRNA expression in cancer. Methods Mol. Biol.676 , 165–184 (2011).
  • Rhodes LV , NitschkeAM, SegarHC et al. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol. Rep. 27(1) , 10–16 (2012).
  • Nalls D , TangSN, RodovaM, SrivastavaRK, ShankarS. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS ONE6(8) , e24099 (2011).
  • Wong KY , YimRL, SoCC, JinDY, LiangR, ChimCS. Epigenetic inactivation of the MIR34B/C in multiple myeloma. Blood118(22) , 5901–5904 (2011).
  • Paik JH , JangJY, JeonYK et al. MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin. Cancer Res. 17(14) , 4761–4771 (2011).
  • Scott GK , MattieMD, BergerCE, BenzSC, BenzCC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res.66(3) , 1277–1281 (2006).
  • Li X , LiuJ, ZhouR, HuangS, HuangS, ChenXM. Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br. J. Haematol.148(1) , 69–79 (2010).
  • Bueno MJ , Pérez de Castro I, Gómez de Cedrón M et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell13(6) , 496–506 (2008).
  • Ru P , SteeleR, HsuehEC, RayRB. Anti-miR-203 Upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer2(7) , 720–727 (2011).
  • Zhou R , YuanP, WangY et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34(6) , 1395–1405 (2009).
  • Haenisch S , LaecheltS, BruckmuellerH et al. Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol. Pharmacol. 80(2) , 314–320 (2011).
  • Bao B , WangZ, AliS et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev. Res. (Phila.) 5(3) , 355–364 (2012).
  • Garzon R , MarcucciG, CroceCM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov.9(10) , 775–789 (2010).
  • Juergens RA , WrangleJ, VendettiFP et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov. 1(7) , 598–607 (2011).
  • Moskalev EA , SchubertM, HoheiselJD. RNA-directed epigenomic reprogramming: an emerging principle of a more targeted cancer therapy? Genes Chromosomes. Cancer51(2) , 105–110 (2012).
  • Li Y , GuessousF, ZhangY et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 69(19) , 7569–7576 (2009).
  • Yamamura S , SainiS, MajidS et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS ONE 7(1) , e29722 (2012).
  • Shi L , ZhangS, FengK et al. MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int. J. Oncol. 40(1) , 119–129 (2012).
  • Li X , SandaT, LookAT, NovinaCD, von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J. Exp. Med.208(4) , 663–675 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.