149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenetic Profile in Chronic Lymphocytic Leukemia using Methylation-Specific Multiplex Ligation-Dependent Probe Amplification

, , , , , , , , , & show all
Pages 491-501 | Published online: 06 Nov 2012

References

  • Zenz T , MertensD, KuppersR, DohnerH, StilgenbauerS. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat. Rev. Cancer10(1) , 37–50 (2010).
  • Rodriguez-Paredes M , EstellerM. Cancer epigenetics reaches mainstream oncology. Nat. Med.17(3) , 330–339 (2011).
  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Plass C , ByrdJC, RavalA, TannerSM, de la Chapelle A. Molecular profiling of chronic lymphocytic leukaemia: genetics meets epigenetics to identify predisposing genes. Br. J. Haematol.139(5) , 744–752 (2007).
  • Bennett LB , TaylorKH, ArthurGL, RahmatpanahFB, HooshmandSI, CaldwellCW. Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia. Epigenomics2(1) , 53–70 (2010).
  • Rush LJ , RavalA, FunchainPet al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res. 64(7) , 2424–2433 (2004).
  • Kanduri M , CahillN, GoranssonHet al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 115(2) , 296–305 (2010).
  • Tong WG , WierdaWG, LinEet al. Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics 5(6) , 499–508 (2010).
  • Yu MK , BergoniaH, SzaboA, PhillipsJD. Progressive disease in chronic lymphocytic leukemia is correlated with the DNA methylation index. Leuk. Res.31(6) , 773–777 (2007).
  • Irving L , Mainou-FowlerT, ParkerA, IbbotsonRE, OscierDG, StrathdeeG. Methylation markers identify high risk patients in IGHV mutated chronic lymphocytic leukemia. Epigenetics6(3) , 300–306 (2011).
  • Fabris S , BollatiV, AgnelliLet al. Biological and clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic lymphocytic leukemia. Epigenetics 6(2) , 188–194 (2011).
  • Rahmatpanah FB , CarstensS, HooshmandSIet al. Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics 1(1) , 39–61 (2009).
  • Raval A , TannerSM, ByrdJCet al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129(5) , 879–890 (2007).
  • Yu L , LiuC, VandeusenJet al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat. Genet. 37(3) , 265–274 (2005).
  • Motiwala T , MajumderS, KutayHet al. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin. Cancer Res. 13(11) , 3174–3181 (2007).
  • Fulop Z , CsernusB, TimarB, SzepesiA, MatolcsyA. Microsatellite instability and hMLH1 promoter hypermethylation in Richter‘s transformation of chronic lymphocytic leukemia. Leukemia17(2) , 411–415 (2003).
  • Mikeska T , CandiloroIL, DobrovicA. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics2(4) , 561–573 (2010).
  • Nygren AO , AmezianeN, DuarteHMet al. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 33(14) , e128 (2005).
  • Eberth S , SchneiderB, RosenwaldAet al. Epigenetic regulation of CD44 in Hodgkin and non-Hodgkin lymphoma. BMC Cancer 10 , 517 (2010).
  • Rohrs S , DirksWG, MeyerCet al. Hypomethylation and expression of BEX2, IGSF4 and TIMP3 indicative of MLL translocations in acute myeloid leukemia. Mol. Cancer 8 , 86 (2009).
  • Leong KJ , WeiW, TannahillLAet al. Methylation profiling of rectal cancer identifies novel markers of early-stage disease. Br. J. Surg. 98(5) , 724–734 (2011).
  • Campas C , CosiallsAM, BarraganMet al. Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp. Hematol. 34(12) , 1663–1669 (2006).
  • Iglesias-Serret D , PiqueM, BarraganMet al. Aspirin induces apoptosis in human leukemia cells independently of NF-κB and MAPKs through alteration of the Mcl-1/Noxa balance. Apoptosis 15(2) , 219–229 (2010).
  • Jeuken JW , CornelissenSJ, VriezenMet al. MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab. Invest. 87(10) , 1055–1065 (2007).
  • Clark SJ , HarrisonJ, PaulCL, FrommerM. High sensitivity mapping of methylated cytosines. Nucleic Acids Res.22(15) , 2990–2997 (1994).
  • Melki JR , VincentPC, ClarkSJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res.59(15) , 3730–3740 (1999).
  • Mayor R , CasadomeL, AzuaraDet al. Long-range epigenetic silencing at 2q14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease. Br. J. Cancer 100(10) , 1534–1539 (2009).
  • Frommer M , McDonaldLE, MillarDSet al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89(5) , 1827–1831 (1992).
  • Katzenellenbogen RA , BaylinSB, HermanJG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood93(12) , 4347–4353 (1999).
  • Takahashi T , ShivapurkarN, ReddyJet al. DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin. Cancer Res. 10(9) , 2928–2935 (2004).
  • Rossi D , CapelloD, GloghiniAet al. Aberrant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica 89(2) , 154–164 (2004).
  • Chim CS , FungTK, WongKF, LauJS, LiangR. Frequent DAP kinase but not p14 or Apaf-1 hypermethylation in B-cell chronic lymphocytic leukemia. J. Hum. Genet.51(9) , 832–838 (2006).
  • Seeliger B , WilopS, OsiekaR, GalmO, JostE. CpG island methylation patterns in chronic lymphocytic leukemia. Leuk. Lymphoma50(3) , 419–426 (2009).
  • Fernandez AF , AssenovY, Martin-SuberoJIet al. A DNA methylation fingerprint of 1628 human samples. Genome Res. 22(2) , 407–419 (2012).
  • Martel V , GuerciA, HumbertJCet al. De novo methylation of tumour suppressor genes CDKN2A and CDKN2B is a rare finding in B-cell chronic lymphocytic leukaemia. Br. J. Haematol.99(2) , 320–324 (1997).
  • Chim CS , FungTK, WongKF, LauJS, LawM, LiangR. Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor in chronic lymphocytic leukaemia in Chinese patients. J. Clin. Pathol.59(9) , 921–926 (2006).
  • Taylor KH , KramerRS, DavisJWet al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67(18) , 8511–8518 (2007).
  • Papageorgiou SG , LambropoulosS, PappaVet al. Hypermethylation of the p15INK4B gene promoter in B-chronic lymphocytic leukemia. Am. J. Hematol. 82(9) , 824–825 (2007).
  • Issa JP , ZehnbauerBA, CivinCIet al. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res. 56(5) , 973–977 (1996).
  • Toyota M , KopeckyKJ, ToyotaMO, JairKW, WillmanCL, IssaJP. Methylation profiling in acute myeloid leukemia. Blood97(9) , 2823–2829 (2001).
  • Garcia-Manero G , DanielJ, SmithTLet al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin. Cancer Res. 8(7) , 2217–2224 (2002).
  • Iwai M , KiyoiH, OzekiKet al. Expression and methylation status of the FHIT gene in acute myeloid leukemia and myelodysplastic syndrome. Leukemia 19(8) , 1367–1375 (2005).
  • Pinyol M , CoboF, BeaSet al. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin‘s lymphomas. Blood91(8) , 2977–2984 (1998).
  • Tsirigotis P , PappaV, LabropoulosSet al. Mutational and methylation analysis of the cyclin-dependent kinase 4 inhibitor (p16INK4A) gene in chronic lymphocytic leukemia. Eur. J. Haematol. 76(3) , 230–236 (2006).
  • Coll-Mulet L , SantidrianAF, CosiallsAMet al. Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. Br. J. Haematol. 142(5) , 793–801 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.