481
Views
1
CrossRef citations to date
0
Altmetric
Review

Epigenetic Genome-Wide Association Methylation in Aging and Longevity

, &
Pages 503-509 | Published online: 06 Nov 2012

References

  • World Health Statistics Annual 1996. WHO, Geneva, Switzerland (1998).
  • From the Centers for Disease Control and Prevention. Public health and aging: trends in aging – United States and worldwide. JAMA289(11) , 1371–1373 (2003).
  • Locher JL , KilgoreML, MorriseyMA, RitchieCS. Patterns and predictors of home health and hospice use by older adults with cancer. J. Am. Geriatr. Soc.54(8) , 1206–1211 (2006).
  • Porcu M , ChiarugiA. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol. Sci.26(2) , 94–103 (2005).
  • Ventura A , LuziL, PaciniS, BaldariCT, PelicciPG. The p66Shc longevity gene is silenced through epigenetic modifications of an alternative promoter. J. Biol. Chem.277(25) , 22370–22376 (2002).
  • Fraga MF , BallestarE, PazMFet al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102(30) , 10604–10609 (2005).
  • Rideout WM 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science293(5532) , 1093–1098 (2001).
  • Morgan HD , SutherlandHG, MartinDI, WhitelawE. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet.23(3) , 314–318 (1999).
  • Hollick JB , PattersonGI, CoeEH Jr, Cone KC, Chandler VL. Allelic interactions heritably alter the activity of a metastable maize pl allele. Genetics141(2) , 709–719 (1995).
  • Grewal SI , KlarAJ. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell86(1) , 95–101 (1996).
  • Cavalli G , ParoR. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell93(4) , 505–518 (1998).
  • Jensen S , GassamaMP, HeidmannT. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet.21(2) , 209–212 (1999).
  • Allen ND , NorrisML, SuraniMA. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell61(5) , 853–861 (1990).
  • Hadchouel M , FarzaH, SimonD, TiollaisP, PourcelC. Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature329(6138) , 454–456 (1987).
  • Roemer I , ReikW, DeanW, KloseJ. Epigenetic inheritance in the mouse. Curr. Biol.7(4) , 277–280 (1997).
  • Franklin TB , MansuyIM. Epigenetic inheritance in mammals: evidence for the impact of adverse environmental effects. Neurobiol. Dis.39(1) , 61–65 (2010).
  • Burzynski SR . Aging: gene silencing or gene activation? Medical Hypotheses64(1) , 201–208 (2005).
  • Lu Q , QiuX, HuN, WenH, SuY, RichardsonBC. Epigenetics, disease, and therapeutic interventions. Ageing Res. Rev.5(4) , 449–467 (2006).
  • Smith EY , FuttnerCR, ChamberlainSJ, JohnstoneKA, ResnickJL. Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus. PLoS Genet.7(12) , e1002422 (2011).
  • Mabb AM , JudsonMC, ZylkaMJ, PhilpotBD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci.34(6) , 293–303 (2011).
  • Niederhoffer KY , PenaherreraM, PugashDet al. Beckwith-Wiedemann syndrome in sibs discordant for IC2 methylation. Am. J. Med. Genet. A 158A(7) , 1662–1669 (2012).
  • Hirasawa R , FeilR. Genomic imprinting and human disease. Essays Biochem.48(1) , 187–200 (2010).
  • Yasui DH , ScolesHA, HorikeSet al. 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum. Mol. Genet. 20(22) , 4311–4323 (2011).
  • Sanchez-Mut JV , HuertasD, EstellerM. Aberrant epigenetic landscape in intellectual disability. Prog. Brain Res.197 , 53–71 (2012).
  • Fouse SD , NagarajanRO, CostelloJF. Genome-scale DNA methylation analysis. Epigenomics2(1) , 105–117 (2010).
  • Bocker MT , HellwigI, BreilingA, EcksteinV, HoAD, LykoF. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood117(19) , e182–e189 (2011).
  • Rakyan VK , DownTA, MaslauSet al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20(4) , 434–439 (2010).
  • Hernandez DG , NallsMA, GibbsJRet al. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet. 20(6) , 1164–1172 (2011).
  • Bocklandt S , LinW, SehlMEet al. Epigenetic predictor of age. PLoS ONE 6(6) , e14821 (2011).
  • Christensen BC , HousemanEA, MarsitCJet al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 5(8) , e1000602 (2009).
  • Koch CM , WagnerW. Epigenetic-aging-signature to determine age in different tissues. Aging3(10) , 1018–1027 (2011).
  • Bork S , PfisterS, WittHet al. DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9(1) , 54–63 (2010).
  • Bollati V , SchwartzJ, WrightRet al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 130(4) , 234–239 (2009).
  • Gentilini D , CastaldiD, MariDet al. Age-dependent skewing of X chromosome inactivation appears delayed in centenarians‘ offspring. Is there a role for allelic imbalance in healthy aging and longevity? Aging Cell 11(2) , 277–283 (2012).
  • Thompson RF , AtzmonG, GheorgheCet al. Tissue-specific dysregulation of DNA methylation in aging. Aging Cell 9(4) , 506–518 (2010).
  • Pincus Z , Smith-VikosT, SlackFJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet.7(9) , e1002306 (2011).
  • Inukai S , de Lencastre A, Turner M, Slack F. Novel microRNAs differentially expressed during aging in the mouse brain. PLoS ONE7(7) , e40028 (2012).
  • Smith-Vikos T , SlackFJ. MicroRNAs and their roles in aging. J. Cell Sci.125(Pt 1) , 7–17 (2012).
  • Lanceta J , ProughRA, LiangR, WangE. MicroRNA group disorganization in aging. Exp. Gerontol.45(4) , 269–278 (2010).
  • Pang S , CurranSP. Longevity and the long arm of epigenetics: acquired parental marks influence lifespan across several generations. Bioessays34(8) , 652–654 (2012).
  • Liang R , KhannaA, MuthusamySet al. Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 10(6) , 1080–1088 (2011).
  • de Lencastre A , PincusZ, ZhouK, KatoM, LeeSS, SlackFJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr. Biol.20(24) , 2159–2168 (2010).
  • Ugalde AP , EspanolY, Lopez-OtinC. Micromanaging aging with miRNAs: new messages from the nuclear envelope. Nucleus2(6) , 549–555 (2011).
  • Elsharawy A , KellerA, FlachsbartFet al. Genome-wide miRNA signatures of human longevity. Aging Cell 11(4) , 607–616 (2012).
  • Berdasco M , EstellerM. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell11(2) , 181–186 (2012).
  • Kim J , KimJ, IssaJJ. Aging and DNA methylation. Curr. Chem. Biol.3 , 321–329 (2009).
  • Vaiserman AM . Epigenetic engineering and its possible role in anti-aging intervention. Rejuvenat. Res.11(1) , 39–42 (2008).
  • Gonzalo S . Epigenetic alterations in aging. J. Appl. Physiol.109(2) , 586–597 (2010).
  • Trygve O . Epigenetics of Aging. Tollefsbol TO (Ed.). Springer, NY, USA (2010).
  • Klauke K , De Haan G. Polycomb group proteins in hematopoietic stem cell aging and malignancies. Int. J. Hematol.94(1) , 11–23 (2011).
  • Krishnan V , ChowMZ, WangZet al. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc. Natl Acad. Sci. USA 108(30) , 12325–12330 (2011).
  • So AY , JungJW, LeeS, KimHS, KangKS. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS ONE6(5) , e19503 (2011).
  • Singhal RP , Mays-HoopesLL, EichhornGL. DNA methylation in aging of mice. Mech. Ageing Dev.41(3) , 199–210 (1987).
  • Wilson VL , SmithRA, MaS, CutlerRG. Genomic 5-methyldeoxycytidine decreases with age. J. Biol. Chem.262(21) , 9948–9951 (1987).
  • Wilson VL , JonesPA. DNA methylation decreases in aging but not in immortal cells. Science220(4601) , 1055–1057 (1983).
  • Richardson BC . Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J. Nutr.132(Suppl. 8) , S2401–S2405 (2002).
  • Richardson B . Impact of aging on DNA methylation. Ageing Res. Rev.2(3) , 245–261 (2003).
  • Zhang Z , DengC, LuQ, RichardsonB. Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech. Ageing Dev.123(9) , 1257–1268 (2002).
  • Flanagan JM , PopendikyteV, PozdniakovaiteNet al. Intra- and interindividual epigenetic variation in human germ cells. Am. J. Hum. Genet. 79(1) , 67–84 (2006).
  • Van Den Hove DL , ChouliarasL, RuttenBP. The role of 5-hydroxymethylcytosine in aging and Alzheimer‘s disease: current status and prospects for future studies. Curr. Alzheimer Res.9(5) , 545–549 (2012).
  • Szulwach KE , LiX, LiYet al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14(12) , 1607–1616 (2011).
  • Van Den Hove DL , ChouliarasL, RuttenBP. The role of 5-hydroxymethylcytosine in aging and Alzheimer‘s disease: current status and prospects for future studies. Curr. Alzheimer Res.9(5) , 545–549 (2012).
  • Mendelsohn AR , LarrickJW. Epigenetic-mediated decline in synaptic plasticity during aging. Rejuvenat. Res.15(1) , 98–101 (2012).
  • Park LK , FrisoS, ChoiSW. Nutritional influences on epigenetics and age-related disease. Proc. Nutr. Soc.71(1) , 75–83 (2012).
  • Li Y , DanielM, TollefsbolTO. Epigenetic regulation of caloric restriction in aging. BMC Med.9 , 98 (2011).
  • Ford D , IonsLJ, AlatawiF, WakelingLA. The potential role of epigenetic responses to diet in ageing. Proc. Nutr. Soc.70(3) , 374–384 (2011).
  • Mckay JA , MathersJC. Diet induced epigenetic changes and their implications for health. Acta Physiol.202(2) , 103–118 (2011).
  • Ly A , HoytL, CrowellJ, KimYI. Folate and DNA methylation. Antioxidants Redox Signal.17(2) , 302–326 (2012).
  • Eckhardt F , LewinJ, CorteseRet al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38(12) , 1378–1385 (2006).
  • Meissner A , MikkelsenTS, GuHet al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205) , 766–770 (2008).
  • Hodges E , SmithAD, KendallJet al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 19(9) , 1593–1605 (2009).
  • Ball MP , LiJB, GaoYet al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27(4) , 361–368 (2009).
  • Deng J , ShoemakerR, XieBet al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 27(4) , 353–360 (2009).
  • Bibikova M , FanJB. Golden Gate assay for DNA methylation profiling. Methods Mol. Biol.507 , 149–163 (2009).
  • Weber M , DaviesJJ, WittigDet al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37(8) , 853–862 (2005).
  • Weber M , HellmannI, StadlerMBet al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39(4) , 457–466 (2007).
  • Zhang X , YazakiJ, SundaresanAet al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126(6) , 1189–1201 (2006).
  • Zilberman D , GehringM, TranRK, BallingerT, HenikoffS. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet.39(1) , 61–69 (2007).
  • Yuan E , HaghighiF, WhiteSet al. A single nucleotide polymorphism chip-based method for combined genetic and epigenetic profiling: validation in decitabine therapy and tumor/normal comparisons. Cancer Res. 66(7) , 3443–3451 (2006).
  • Bird AP , TaggartMH, SmithBA. Methylated and unmethylated DNA compartments in the sea urchin genome. Cell17(4) , 889–901 (1979).
  • Lippman Z , GendrelAV, BlackMet al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430(6998) , 471–476 (2004).
  • Oda M , GreallyJM. The HELP assay. Methods Mol. Biol.507 , 77–87 (2009).
  • Rauch T , LiH, WuX, PfeiferGP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res.66(16) , 7939–7947 (2006).
  • Leamon JH , LeeWL, TartaroKRet al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 24(21) , 3769–3777 (2003).
  • Down TA , RakyanVK, TurnerDJet al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26(7) , 779–785 (2008).
  • McKernan KJ , PeckhamHE, CostaGLet al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 19(9) , 1527–1541 (2009).
  • Cokus SJ , FengS, ZhangXet al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184) , 215–219 (2008).
  • Lister R , O‘MalleyRC, Tonti-FilippiniJet al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3) , 523–536 (2008).
  • Li Y , ZhuJ, TianGet al. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 8(11) , e1000533 (2010).
  • Clarke J , WuHC, JayasingheL, PatelA, ReidS, BayleyH. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4(4) , 265–270 (2009).
  • Suzuki M , JingQ, LiaD, PascualM, MclellanA, GreallyJM. Optimized design and data analysis of tag-based cytosine methylation assays. Genome Biol.11(4) , R36 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.