313
Views
0
CrossRef citations to date
0
Altmetric
Review

Chromatin Regulators with Tumor Suppressor Properties and their Alterations in Human Cancers

, &
Pages 537-549 | Published online: 06 Nov 2012

References

  • Li B , CareyM, WorkmanJL. The role of chromatin during transcription. Cell128(4) , 707–719 (2007).
  • Ram O , GorenA, AmitIet al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147(7) , 1628–1639 (2011).
  • Baylin SB , OhmJE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer6(2) , 107–116 (2006).
  • Rodriguez-Paredes M , EstellerM. Cancer epigenetics reaches mainstream oncology. Nat. Med.17(3) , 330–339 (2011).
  • Chi P , AllisCD, WangGG. Covalent histone modifications – miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer10(7) , 457–469 (2010).
  • Tsai MC , SpitaleRC, ChangHY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res.71(1) , 3–7 (2011).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4) , 693–705 (2007).
  • Strahl BD , AllisCD. The language of covalent histone modifications. Nature403(6765) , 41–45 (2000).
  • Smith E , ShilatifardA. The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol. Cell40(5) , 689–701 (2010).
  • Shahbazian MD , GrunsteinM. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem.76 , 75–100 (2007).
  • Minucci S , PelicciPG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer6(1) , 38–51 (2006).
  • Gu W , RoederRG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90(4) , 595–606 (1997).
  • Ito A , LaiCH, ZhaoXet al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20(6) , 1331–1340 (2001).
  • Ferrari R , PellegriniM, HorwitzGA, XieW, BerkAJ, KurdistaniSK. Epigenetic reprogramming by adenovirus e1a. Science321(5892) , 1086–1088 (2008).
  • Gayther SA , BatleySJ, LingerLet al. Mutations truncating the EP300 acetylase in human cancers. Nat. Genet. 24(3) , 300–303 (2000).
  • Muraoka M , KonishiM, Kikuchi-YanoshitaRet al. p300 gene alterations in colorectal and gastric carcinomas. Oncogene12(7) , 1565–1569 (1996).
  • Petrij F , GilesRH, DauwerseHGet al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376(6538) , 348–351 (1995).
  • Borrow J , StantonVP Jr, Andresen JM et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet.14(1) , 33–41 (1996).
  • Zhao LY , LiuY, BertosNR, YangXJ, LiaoD. PCAF is a coactivator for p73-mediated transactivation. Oncogene22(51) , 8316–8329 (2003).
  • Zhu C , QinYR, XieDet al. Characterization of tumor suppressive function of P300/CBP-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma. Oncogene 28(31) , 2821–2828 (2009).
  • Ozdag H , BatleySJ, ForstiAet al. Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours. Br. J. Cancer 87(10) , 1162–1165 (2002).
  • Halkidou K , GaughanL, CookS, LeungHY, NealDE, RobsonCN. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate59(2) , 177–189 (2004).
  • Wilson AJ , ByunDS, PopovaNet al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 281(19) , 13548–13558 (2006).
  • Bolden JE , PeartMJ, JohnstoneRW. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov.5(9) , 769–784 (2006).
  • Ropero S , FragaMF, BallestarEet al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet. 38(5) , 566–569 (2006).
  • Frolov MV , DysonNJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell. Sci.117(Pt 11) , 2173–2181 (2004).
  • Rodriguez RM , FragaMF. Aging and cancer: are sirtuins the link? Future Oncol.6(6) , 905–915 (2010).
  • Saunders LR , VerdinE. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene26(37) , 5489–5504 (2007).
  • Wang RH , SenguptaK, LiCet al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4) , 312–323 (2008).
  • Powell MJ , CasimiroMC, Cordon-CardoCet al. Disruption of a Sirt1-dependent autophagy checkpoint in the prostate results in prostatic intraepithelial neoplasia lesion formation. Cancer Res. 71(3) , 964–975 (2010).
  • Kim HS , VassilopoulosA, WangRHet al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20(4) , 487–499 (2011).
  • Finley LW , CarracedoA, LeeJet al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19(3) , 416–428 (2011).
  • Semenza GL . HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev.20(1) , 51–56 (2010).
  • Kim HS , PatelK, Muldoon-JacobsKet al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1) , 41–52 (2010).
  • Mosammaparast N , ShiY. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu. Rev. Biochem.79 , 155–179 (2010).
  • Beisel C , ParoR. Silencing chromatin: comparing modes and mechanisms. Nat. Rev. Genet.12(2) , 123–135 (2011).
  • He L , YuJX, LiuLet al. RIZ1, but not the alternative RIZ2 product of the same gene, is underexpressed in breast cancer, and forced RIZ1 expression causes G2–M cell cycle arrest and/or apoptosis. Cancer Res. 58(19) , 4238–4244 (1998).
  • Kim KC , GengL, HuangS. Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res.63(22) , 7619–7623 (2003).
  • Du Y , CarlingT, FangW, PiaoZ, SheuJC, HuangS. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res.61(22) , 8094–8099 (2001).
  • Oshimo Y , OueN, MitaniYet al. Frequent epigenetic inactivation of RIZ1 by promoter hypermethylation in human gastric carcinoma. Int. J. Cancer 110(2) , 212–218 (2004).
  • Xie P , TianC, AnLet al. Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes. Cell Signal 20(9) , 1671–1678 (2008).
  • Chuikov S , KurashJK, WilsonJRet al. Regulation of p53 activity through lysine methylation. Nature 432(7015) , 353–360 (2004).
  • Lehnertz B , RogalskiJC, SchulzeFMet al. p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol. Cell 43(4) , 673–680 (2011).
  • Al Sarakbi W , SasiW, JiangWG, RobertsT, NewboldRF, MokbelK. The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters. BMC Cancer9 , 290 (2009).
  • Dalgliesh GL , FurgeK, GreenmanCet al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279) , 360–363 (2010).
  • Duns G , van den Berg E, van Duivenbode I et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res.70(11) , 4287–4291 (2010).
  • Zhang J , DingL, HolmfeldtLet al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481(7380) , 157–163 (2012).
  • Morishita M , di Luccio E. Cancers and the NSD family of histone lysine methyltransferases. Biochim. Biophys. Acta1816(2) , 158–163 (2011).
  • Marango J , ShimoyamaM, NishioHet al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 111(6) , 3145–3154 (2008).
  • Berdasco M , RoperoS, SetienFet al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc. Natl Acad. Sci. USA 106(51) , 21830–21835 (2009).
  • Kim SM , KeeHJ, ChoeN, KimJY, KookH, SeoSB. The histone methyltransferase activity of WHISTLE is important for the induction of apoptosis and HDAC1-mediated transcriptional repression. Exp. Cell Res.313(5) , 975–983 (2007).
  • Zhou Z , ThomsenR, KahnsS, NielsenAL. The NSD3L histone methyltransferase regulates cell cycle and cell invasion in breast cancer cells. Biochem. Biophys. Res. Commun.398(3) , 565–570 (2010).
  • Shi Y . Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet.8(11) , 829–833 (2007).
  • Shi Y , LanF, MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7) , 941–953 (2004).
  • Wang Y , ZhangH, ChenYet al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4) , 660–672 (2009).
  • Hayami S , KellyJD, ChoHSet al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128(3) , 574–586 (2010).
  • Huang J , SenguptaR, EspejoABet al. p53 is regulated by the lysine demethylase LSD1. Nature 449(7158) , 105–108 (2007).
  • Harris WJ , HuangX, LynchJTet al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21(4) , 473–487 (2012).
  • Hong S , ChoYW, YuLR, YuH, VeenstraTD, GeK. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA104(47) , 18439–18444 (2007).
  • van Haaften G , DalglieshGL, DaviesHet al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41(5) , 521–523 (2009).
  • Herz HM , MaddenLD, ChenZet al. The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol. Cell. Biol.30(10) , 2485–2497 (2010).
  • Wang JK , TsaiMC, PoulinGet al. The histone demethylase UTX enables RB-dependent cell fate control. Genes Dev. 24(4) , 327–332 (2010).
  • Agger K , CloosPA, RudkjaerLet al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A–ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23(10) , 1171–1176 (2009).
  • Niu X , ZhangT, LiaoLet al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31(6) , 776–786 (2011).
  • Osawa T , MuramatsuM, WangFet al. Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc. Natl Acad. Sci. USA 108(51) , 20725–20729 (2011).
  • Li Q , ShiL, GuiBet al. Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Res. 71(21) , 6899–6908 (2011).
  • Nijwening JH , GeutjesEJ, BernardsR, BeijersbergenRL. The histone demethylase Jarid1b (Kdm5b) is a novel component of the Rb pathway and associates with E2f-target genes in MEFs during senescence. PLoS ONE6(9) , e25235 (2011).
  • Ho L , CrabtreeGR. Chromatin remodelling during development. Nature463(7280) , 474–484 (2010).
  • Roberts CW , OrkinSH. The SWI/SNF complex – chromatin and cancer. Nat. Rev. Cancer4(2) , 133–142 (2004).
  • Wilson BG , RobertsCW. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer11(7) , 481–492 (2011).
  • Versteege I , SevenetN, LangeJet al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394(6689) , 203–206 (1998).
  • Sevenet N , SheridanE, AmramD, SchneiderP, HandgretingerR, DelattreO. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am. J. Hum. Genet.65(5) , 1342–1348 (1999).
  • Roberts CW , GalushaSA, McMenaminME, FletcherCD, OrkinSH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA97(25) , 13796–13800 (2000).
  • Roberts CW , LerouxMM, FlemingMD, OrkinSH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell2(5) , 415–425 (2002).
  • Zhang ZK , DaviesKP, AllenJet al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol. Cell. Biol. 22(16) , 5975–5988 (2002).
  • Isakoff MS , SansamCG, TamayoPet al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc. Natl Acad. Sci. USA 102(49) , 17745–17750 (2005).
  • Wilson BG , WangX, ShenXet al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18(4) , 316–328 (2010).
  • McKenna ES , SansamCG, ChoYJet al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol. Cell. Biol. 28(20) , 6223–6233 (2008).
  • Yamamichi N , Yamamichi-NishinaM, MizutaniTet al. The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene 24(35) , 5471–5481 (2005).
  • Wong AK , ShanahanF, ChenYet al. BRG1, a component of the SWI–SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 60(21) , 6171–6177 (2000).
  • Rodriguez-Nieto S , CanadaA, ProsEet al. Massive parallel DNA pyrosequencing analysis of the tumor suppressor BRG1/SMARCA4 in lung primary tumors. Hum. Mutat. 32(2) , e1999–e2017 (2011).
  • Bock VL , LyonsJG, HuangXXet al. BRM and BRG1 subunits of the SWI/SNF chromatin remodelling complex are downregulated upon progression of benign skin lesions into invasive tumours. Br. J. Dermatol. 164(6) , 1221–1227 (2011).
  • Shen H , PowersN, SainiNet al. The SWI/SNF ATPase Brm is a gatekeeper of proliferative control in prostate cancer. Cancer Res. 68(24) , 10154–10162 (2008).
  • Alessio N , SquillaroT, CipollaroM, BagellaL, GiordanoA, GalderisiU. The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB-P53 pathways. Oncogene29(40) , 5452–5463 (2010).
  • Dunaief JL , StroberBE, GuhaSet al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79(1) , 119–130 (1994).
  • Strobeck MW , ReismanDN, GunawardenaRWet al. Compensation of BRG-1 function by Brm: insight into the role of the core SWI–SNF subunits in retinoblastoma tumor suppressor signaling. J. Biol. Chem. 277(7) , 4782–4789 (2002).
  • Becker TM , HaferkampS, DijkstraMKet al. The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a. Mol. Cancer 8 , 4 (2009).
  • Strobeck MW , KnudsenKE, FribourgAFet al. BRG-1 is required for RB-mediated cell cycle arrest. Proc. Natl Acad. Sci. USA 97(14) , 7748–7753 (2000).
  • Bultman SJ , HerschkowitzJI, GodfreyVet al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27(4) , 460–468 (2008).
  • Huang J , ZhaoYL, LiY, FletcherJA, XiaoS. Genomic and functional evidence for an ARID1A tumor suppressor role. Genes Chromosomes Cancer46(8) , 745–750 (2007).
  • Mamo A , CavalloneL, TuzmenSet al. An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer. Oncogene 31(16) , 2090–2100 (2012).
  • Jones S , WangTL, Shih IeM et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science330(6001) , 228–231 (2010).
  • Wiegand KC , ShahSP, Al-AghaOMet al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med.363(16) , 1532–1543 (2010).
  • Wang K , KanJ, YuenSTet al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43(12) , 1219–1223 (2011).
  • Jones S , LiM, ParsonsDWet al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum. Mutat. 33(1) , 100–103 (2012).
  • Fujimoto A , TotokiY, AbeTet al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44(7) , 760–764 (2012).
  • Nagl NG Jr, Zweitzig DR, Thimmapaya B, Beck GR Jr, Moran E. The c-myc gene is a direct target of mammalian SWI/SNF-related complexes during differentiation-associated cell cycle arrest. Cancer Res.66(3) , 1289–1293 (2006).
  • Guan B , WangTL, Shih IeM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res.71(21) , 6718–6727 (2011).
  • Li M , ZhaoH, ZhangXet al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43(9) , 828–829 (2011).
  • Yan Z , CuiK, MurrayDMet al. PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev. 19(14) , 1662–1667 (2005).
  • Xia W , NagaseS, MontiaAGet al. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res. 68(6) , 1667–1674 (2008).
  • Varela I , TarpeyP, RaineKet al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331) , 539–542 (2011).
  • Drost J , MantovaniF, ToccoFet al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat. Cell. Biol.12(4) , 380–389 (2010).
  • Liu H , ZhangL, NiuZet al. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer 8 , 253 (2008).
  • Lin JR , ZemanMK, ChenJY, YeeMC, CimprichKA. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol. Cell42(2) , 237–249 (2011).
  • Moinova HR , ChenWD, ShenLet al. HLTF gene silencing in human colon cancer. Proc. Natl Acad. Sci. USA99(7) , 4562–4567 (2002).
  • Hamai Y , OueN, MitaniYet al. DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci. 94(8) , 692–698 (2003).
  • Herbst A , WallnerM, RahmigKet al. Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence. Eur. J. Gastroenterol. Hepatol. 21(5) , 565–569 (2009).
  • Kim JJ , ChungSW, KimJHet al. Promoter methylation of helicase-like transcription factor is associated with the early stages of gastric cancer with family history. Ann. Oncol. 17(4) , 657–662 (2006).
  • Nagarajan P , OnamiTM, RajagopalanS, KaniaS, DonnellR, VenkatachalamS. Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene28(8) , 1053–1062 (2009).
  • Bagchi A , PapazogluC, WuYet al. CHD5 is a tumor suppressor at human 1p36. Cell 128(3) , 459–475 (2007).
  • Kim MS , ChungNG, KangMR, YooNJ, LeeSH. Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology58(5) , 660–668 (2011).
  • Gorringe KL , ChoongDY, WilliamsLHet al. Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer. Neoplasia 10(11) , 1253–1258 (2008).
  • Fujita T , IgarashiJ, OkawaERet al. CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J. Natl Cancer Inst.100(13) , 940–949 (2008).
  • Mulero-Navarro S , EstellerM. Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer. Epigenetics3(4) , 210–215 (2008).
  • Garcia I , MayolG, RodriguezEet al. Expression of the neuron-specific protein CHD5 is an independent marker of outcome in neuroblastoma. Mol. Cancer 9 , 277 (2010).
  • Wong RR , ChanLK, TsangTPet al. CHD5 downregulation associated with poor prognosis in epithelial ovarian cancer. Gynecol. Obstet. Invest.72(3) , 203–207 (2011).
  • Zang ZJ , CutcutacheI, PoonSLet al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44(5) , 570–574 (2012).
  • Schwartzentruber J , KorshunovA, LiuXYet al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384) , 226–231 (2012).
  • Wu G , BroniscerA, McEachronTAet al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44(3) , 251–253 (2012).
  • Seligson DB , HorvathS, ShiTet al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046) , 1262–1266 (2005).
  • Barlesi F , GiacconeG, Gallegos-RuizMIet al. Global histone modifications predict prognosis of resected non-small-cell lung cancer. J. Clin. Oncol. 25(28) , 4358–4364 (2007).
  • Chadwick RB , JiangGL, BenningtonGAet al. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc. Natl Acad. Sci. USA 97(6) , 2662–2667 (2000).
  • Zhang C , LiH, WangYet al. Epigenetic inactivation of the tumor suppressor gene RIZ1 in hepatocellular carcinoma involves both DNA methylation and histone modifications. J. Hepatol. 53(5) , 889–895 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.