430
Views
0
CrossRef citations to date
0
Altmetric
Review

One, Two, Three: How Histone Methylation is Read

Pages 641-653 | Published online: 18 Dec 2012

References

  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3) , 381–395 (2011).
  • Gershey EL , HaslettGW, VidaliG, AllfreyVG. Chemical studies of histone methylation. Evidence for the occurrence of 3-methylhistidine in avian erythrocyte histone fractions. J. Biol. Chem.244(18) , 4871–4877 (1969).
  • Borun TW , PearsonD, PaikWK. Studies of histone methylation during the HeLa S-3 cell cycle. J. Biol. Chem.247(13) , 4288–4298 (1972).
  • Lachner M , JenuweinT. The many faces of histone lysine methylation. Curr. Opin Cell Biol.14(3) , 286–298 (2002).
  • Scharf AN , ImhofA. Every methyl counts – epigenetic calculus. FEBS Lett.585(13) , 2001–2007 (2011).
  • Greer EL , ShiY. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet.13(5) , 343–357 (2012).
  • Barth TK , ImhofA. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem. Sci.35(11) , 618–626 (2010).
  • Kooistra SM , HelinK. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol.13(5) , 297–311 (2012).
  • Tremethick DJ . Higher-order structures of chromatin: the elusive 30 nm fiber. Cell128(4) , 651–654 (2007).
  • Grigoryev SA , WoodcockCL. Chromatin organization – the 30nm fiber. Exp. Cell Res.318(12) , 1448–1455 (2012).
  • Hayes JJ , HansenJC. Nucleosomes and the chromatin fiber. Curr. Opin Genet. Dev.11(2) , 124–129 (2001).
  • Schlick T , HayesJ, GrigoryevS. Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. J. Biol. Chem.287(8) , 5183–5191 (2012).
  • Wang X , HayesJJ. Physical methods used to study core histone tail structures and interactions in solution. Biochem. Cell Biol.84(4) , 578–588 (2006).
  • Hansen JC . Linking genome structure and function through specific histone acetylation. ACS Chem. Biol.1(2) , 69–72 (2006).
  • Lu X , SimonMD, ChodaparambilJV, HansenJC, ShokatKM, LugerK. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat. Struct. Mol. Biol.15(10) , 1122–1124 (2008).
  • Jasencakova Z , ScharfAN, AskKet al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell 37(5) , 736–743 (2010).
  • Allis CD , MuirTW. Spreading chromatin into chemical biology. Chembiochem12(2) , 264–279 (2011).
  • Maurer-Stroh S , DickensNJ, Hughes-DaviesL, KouzaridesT, EisenhaberF, PontingCP. The Tudor domain ‘Royal Family‘: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci.28(2) , 69–74 (2003).
  • Khorasanizadeh S . Recognition of methylated histones: new twists and variations. Curr. Opin Struct. Biol.21(6) , 744–749 (2011).
  • Wysocka J , SwigutT, MilneTAet al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121(6) , 859–872 (2005).
  • Collins RE , NorthropJP, HortonJRet al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat. Struct. Mol. Biol. 15(3) , 245–250 (2008).
  • Liu W , TanasaB, TyurinaOVet al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466(7305) , 508–512 (2010).
  • Kuo AJ , SongJ, CheungPet al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 484(7392) , 115–119 (2012).
  • Jacobs SA , KhorasanizadehS. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295(5562) , 2080–2083 (2002).
  • Nielsen PR , NietlispachD, MottHRet al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416(6876) , 103–107 (2002).
  • Hughes RM , WigginsKR, KhorasanizadehS, WatersML. Recognition of trimethyllysine by a chromodomain is not driven by the hydrophobic effect. Proc. Natl Acad. Sci. USA104(27) , 11184–11188 (2007).
  • Lu Z , LaiJ, ZhangY. Importance of charge independent effects in readout of the trimethyllysine mark by HP1 chromodomain. J. Am. Chem. Soc.131(41) , 14928–14931 (2009).
  • Yap KL , ZhouMM. Keeping it in the family: diverse histone recognition by conserved structural folds. Crit. Rev. Biochem. Mol. Biol.45(6) , 488–505 (2010).
  • Yap KL , ZhouMM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry50(12) , 1966–1980 (2011).
  • Eissenberg JC . Structural biology of the chromodomain: form and function. Gene496(2) , 69–78 (2012).
  • Adams-Cioaba MA , MinJ. Structure and function of histone methylation binding proteins. Biochem. Cell Biol.87(1) , 93–105 (2009).
  • Yun M , WuJ, WorkmanJL, LiB. Readers of histone modifications. Cell Res.21(4) , 564–578 (2011).
  • Bernstein E , DuncanEM, MasuiO, GilJ, HeardE, AllisCD. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell Biol.26(7) , 2560–2569 (2006).
  • Kaustov L , OuyangH, AmayaMet al. Recognition and specificity determinants of the human cbx chromodomains. J. Biol. Chem. 286(1) , 521–529 (2011).
  • Fischle W , WangY, JacobsSA, KimY, AllisCD, KhorasanizadehS. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev.17(15) , 1870–1881 (2003).
  • Daujat S , ZeisslerU, WaldmannT, HappelN, SchneiderR. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem.280(45) , 38090–38095 (2005).
  • Ruan J , OuyangH, AmayaMFet al. Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a. PLoS One 7(4) , e35376 (2012).
  • Lee J , ThompsonJR, BotuyanMV, MerG. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Nat. Struct. Mol. Biol.15(1) , 109–111 (2008).
  • Huang Y , FangJ, BedfordMT, ZhangY, XuRM. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science312(5774) , 748–751 (2006).
  • Jeong KW , KimK, SituAJ, UlmerTS, AnW, StallcupMR. Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation. Nat. Struct. Mol. Biol.18(12) , 1358–1365 (2011).
  • Sun Y , JiangX, XuYet al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat. Cell Biol. 11(11) , 1376–1382 (2009).
  • Trojer P , LiG, SimsRJ 3rd et al. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell129(5) , 915–928 (2007).
  • Klymenko T , PappB, FischleWet al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20(9) , 1110–1122 (2006).
  • Min J , Allali-HassaniA, NadyNet al. L3MBTL1 recognition of mono- and dimethylated histones. Nat. Struct. Mol. Biol. 14(12) , 1229–1230 (2007).
  • Li H , FischleW, WangWet al. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Mol. Cell 28(4) , 677–691 (2007).
  • Guo Y , NadyN, QiCet al. Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res. 37(7) , 2204–2210 (2009).
  • Grimm C , MatosR, Ly-HartigNet al. Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt. EMBO J. 28(13) , 1965–1977 (2009).
  • Kalakonda N , FischleW, BoccuniPet al. Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene 27(31) , 4293–4304 (2008).
  • Margueron R , JustinN, OhnoKet al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461(7265) , 762–767 (2009).
  • Xu C , BianC, YangWet al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc. Natl Acad. Sci. USA 107(45) , 19266–19271 (2010).
  • Garske AL , OliverSS, WagnerEKet al. Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat. Chem. Biol. 6(4) , 283–290 (2010).
  • Qiu Y , ZhangW, ZhaoCet al. Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Biochem. J. 442(3) , 527–538 (2012).
  • Oliver SS , DenuJM. Disrupting the reader of histone language. Angew. Chem. Int. Ed. Engl.50(26) , 5801–5803 (2011).
  • Iwase S , XiangB, GhoshSet al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat. Struct. Mol. Biol.18(7) , 769–776 (2011).
  • Otani J , NankumoT, AritaK, InamotoS, AriyoshiM, ShirakawaM. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. EMBO Rep.10(11) , 1235–1241 (2009).
  • Taverna SD , LiH, RuthenburgAJ, AllisCD, PatelDJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol.14(11) , 1025–1040 (2007).
  • Chakravarty S , ZengL, ZhouMM. Structure and site-specific recognition of histone H3 by the PHD finger of human autoimmune regulator. Structure17(5) , 670–679 (2009).
  • Lan F , CollinsRE, De Cegli R et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature448(7154) , 718–722 (2007).
  • Chignola F , GaetaniM, RebaneAet al. The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation. Nucleic Acids Res. 37(9) , 2951–2961 (2009).
  • Zhang Y , JurkowskaR, SoeroesSet al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38(13) , 4246–4253 (2010).
  • Ooi SK , QiuC, BernsteinEet al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154) , 714–717 (2007).
  • Schmitges FW , PrustyAB, FatyMet al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42(3) , 330–341 (2011).
  • Couture JF , CollazoE, TrievelRC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat. Struct. Mol. Biol.13(8) , 698–703 (2006).
  • Han Z , GuoL, WangH, ShenY, DengXW, ChaiJ. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell22(1) , 137–144 (2006).
  • Ruthenburg AJ , WangW, GrayboschDMet al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat. Struct. Mol. Biol. 13(8) , 704–712 (2006).
  • Schuetz A , Allali-HassaniA, MartinFet al. Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J. 25(18) , 4245–4252 (2006).
  • Migliori V , MullerJ, PhalkeSet al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat. Struct. Mol. Biol. 19(2) , 136–144 (2012).
  • Selenko P , SprangersR, StierG, BuhlerD, FischerU, SattlerM. SMN tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol.8(1) , 27–31 (2001).
  • Yang Y , LuY, EspejoAet al. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 40(6) , 1016–1023 (2011).
  • Zhao Q , RankG, TanYTet al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16(3) , 304–311 (2009).
  • Iberg AN , EspejoA, ChengDet al. Arginine methylation of the histone H3 tail impedes effector binding. J. Biol. Chem. 283(6) , 3006–3010 (2008).
  • Migliori V , PhalkeS, BezziM, GuccioneE. Arginine/lysine-methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation. Epigenomics2(1) , 119–137 (2010).
  • Ruthenburg AJ , LiH, PatelDJ, AllisCD. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol.8(12) , 983–994 (2007).
  • Wang Z , PatelDJ. Combinatorial readout of dual histone modifications by paired chromatin-associated modules. J. Biol. Chem.286(21) , 18363–18368 (2011).
  • Ramon-Maiques S , KuoAJ, CarneyDet al. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc. Natl Acad. Sci. USA 104(48) , 18993–18998 (2007).
  • Lindroth AM , ShultisD, JasencakovaZet al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with Chromomethylase3. EMBO J. 23(21) , 4286–4296 (2004).
  • Pasillas MP , ShahM, KampsMP. NSD1 PHD domains bind methylated H3K4 and H3K9 using interactions disrupted by point mutations in human sotos syndrome. Hum. Mutat.32(3) , 292–298 (2011).
  • Wu H , ZengH, LamRet al. Structural and histone binding ability characterizations of human PWWP domains. PLoS One 6(6) , e18919 (2011).
  • Vezzoli A , BonadiesN, AllenMDet al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat. Struct. Mol. Biol. 17(5) , 617–619 (2010).
  • Qin S , JinL, ZhangJet al. Recognition of unmodified histone H3 by the first PHD finger of bromodomain-PHD finger protein 2 provides insights into the regulation of histone acetyltransferases monocytic leukemic zinc-finger protein (MOZ) and MOZ-related factor (MORF). J. Biol. Chem. 286(42) , 36944–36955 (2011).
  • Rajakumara E , WangZ, MaHet al. PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol. Cell 43(2) , 275–284 (2012).
  • Nady N , LemakA, WalkerJRet al. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J. Biol. Chem. 286(27) , 24300–24311 (2011).
  • Arita K , IsogaiS, OdaTet al. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc. Natl Acad. Sci. USA 109(32) , 12950–12955 (2012).
  • Tsai WW , WangZ, YiuTTet al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468(7326) , 927–932 (2010).
  • Ruthenburg AJ , LiH, MilneTAet al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145(5) , 692–706 (2011).
  • Musselman CA , RamirezJ, SimsJKet al. Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Proc. Natl Acad. Sci. USA 109(3) , 787–792 (2012).
  • Vermeulen M , MulderKW, DenissovSet al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131(1) , 58–69 (2007).
  • Jacobson RH , LadurnerAG, KingDS, TjianR. Structure and function of a human TAFII250 double bromodomain module. Science288(5470) , 1422–1425 (2000).
  • Gong W , ZhouT, MoJ, PerrettS, WangJ, FengY. Structural insight into recognition of methylated histone tails by retinoblastoma-binding protein 1. J. Biol. Chem.287(11) , 8531–8540 (2012).
  • Kim D , BlusBJ, ChandraV, HuangP, RastinejadF, KhorasanizadehS. Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain. Nat. Struct. Mol. Biol.17(8) , 1027–1029 (2010).
  • Maison C , BaillyD, PetersAHet al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30(3) , 329–334 (2002).
  • Trelle MB , Salcedo-AmayaAM, CohenAM, StunnenbergHG, JensenON. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. J. Proteome Res.8(7) , 3439–3450 (2009).
  • Tan M , LuoH, LeeSet al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6) , 1016–1028 (2011).
  • Garcia BA , PesaventoJJ, MizzenCA, KelleherNL. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods4(6) , 487–489 (2007).
  • Fischle W , WangY, AllisCD. Binary switches and modification cassettes in histone biology and beyond. Nature425(6957) , 475–479 (2003).
  • Flanagan JF , MiLZ, ChruszczMet al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438(7071) , 1181–1185 (2005).
  • Pena PV , DavrazouF, ShiXet al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442(7098) , 100–103 (2006).
  • Varier RA , OutchkourovNS, De Graaf P et al. A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO J.29(23) , 3967–3978 (2010).
  • Li H , IlinS, WangWet al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442(7098) , 91–95 (2006).
  • Fischle W , TsengBS, DormannHLet al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438(7071) , 1116–1122 (2005).
  • Hirota T , LippJJ, TohBH, PetersJM. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature438(7071) , 1176–1180 (2005).
  • Gehani SS , Agrawal-SinghS, DietrichN, ChristophersenNS, HelinK, HansenK. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell39(6) , 886–900 (2010).
  • Stojic L , JasencakovaZ, PreziosoCet al. Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)–Ezh2 and PRC2–Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenet. Chromatin 4 , 16 (2011).
  • Fiedler M , Sanchez-BarrenaMJ, NekrasovMet al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol. Cell 30(4) , 507–518 (2008).
  • Bian C , XuC, RuanJet al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J. 30(14) , 2829–2842 (2011).
  • Sabbattini P , CanzonettaC, SjobergMet al. A novel role for the Aurora B kinase in epigenetic marking of silent chromatin in differentiated postmitotic cells. EMBO J. 26(22) , 4657–4669 (2007).
  • Ayoub N , JeyasekharanAD, BernalJA, VenkitaramanAR. HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature453(7195) , 682–686 (2008).
  • Hiragami-Hamada K , ShinmyozuK, HamadaDet al. N-terminal phosphorylation of HP1{α} promotes its chromatin binding. Mol. Cell. Biol. 31(6) , 1186–1200 (2011).
  • Hatano A , MatsumotoM, HigashinakagawaT, NakayamaKI. Phosphorylation of the chromodomain changes the binding specificity of Cbx2 for methylated histone H3. Biochem. Biophys. Res. Commun.397(1) , 93–99 (2011).
  • O‘Loghlen A , Munoz-CabelloAM, Gaspar-MaiaAet al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem. Cell 10(1) , 33–46 (2012).
  • Vermeulen M , EberlHC, MatareseFet al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6) , 967–980 (2010).
  • Nikolov M , StutzerA, MoschKet al. Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol. Cell. Proteomics 10(11) , M110.005371 (2011).
  • Bartke T , VermeulenM, XhemalceB, RobsonSC, MannM, KouzaridesT. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell143(3) , 470–484 (2010).
  • Bock I , KudithipudiS, TamasR, KungulovskiG, DhayalanA, JeltschA. Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC Biochem.12 , 48 (2011).
  • Bua DJ , KuoAJ, CheungPet al. Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLoS One 4(8) , e6789 (2009).
  • Nady N , MinJ, KaretaMS, ChedinF, ArrowsmithCH. A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem. Sci.33(7) , 305–313 (2008).
  • Morettini S , TribusM, ZeilnerAet al. The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization. Nucleic Acids Res. 39(8) , 3103–3115 (2011).
  • Mateos-Langerak J , BrinkMC, LuijsterburgMS, Van Der Kraan I, Van Driel R, Verschure PJ. Pericentromeric heterochromatin domains are maintained without accumulation of HP1. Mol. Biol. Cell18(4) , 1464–1471 (2007).
  • Quinn AM , BedfordMT, EspejoAet al. A homogeneous method for investigation of methylation-dependent protein-protein interactions in epigenetics. Nucleic Acids Res. 38(2) , e11 (2010).
  • Wigle TJ , HeroldJM, SenisterraGAet al. Screening for inhibitors of low-affinity epigenetic peptide-protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins. J. Biomol. Screen 15(1) , 62–71 (2010).
  • Herold JM , WigleTJ, NorrisJLet al. Small-molecule ligands of methyl-lysine binding proteins. J. Med. Chem. 54(7) , 2504–2511 (2010).
  • Egorova KS , OlenkinaOM, OleninaLV. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc.)75(5) , 535–548 (2010).
  • Sampath SC , MarazziI, YapKLet al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 27(4) , 596–608 (2007).
  • West LE , RoyS, Lachmi-WeinerKet al. The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression. J. Biol. Chem. 285(48) , 37725–37732 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.