265
Views
0
CrossRef citations to date
0
Altmetric
Special Report

MacroH2A in Stem Cells: A Story Beyond Gene Repression

, , &
Pages 221-227 | Published online: 27 Mar 2012

References

  • Waddington CH . The Epigenetics of Birds. Cambridge University Press, Cambridge, UK (1952).
  • Bird A . Perceptions of epigenetics. Nature447(7143) , 396–398 (2007).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3) , 381–395 (2011).
  • Evans M . Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat. Rev. Mol. Cell Biol.12(10) , 680–686 (2011).
  • Smith AG . Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol.17 , 435–462 (2001).
  • Boyer LA , LeeTI, ColeMF et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6) , 947–956 (2005).
  • Chew JL , LohYH, ZhangW et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell Biol. 25(14) , 6031–6046 (2005).
  • Loh YH , WuQ, ChewJL et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38(4) , 431–440 (2006).
  • Chen X , XuH, YuanP et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6) , 1106–1117 (2008).
  • Kim J , ChuJ, ShenX, WangJ, OrkinSH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell132(6) , 1049–1061 (2008).
  • Niwa H . How is pluripotency determined and maintained? Development134(4) , 635–646 (2007).
  • Hake SB , XiaoA, AllisCD. Linking the epigenetic ‘language‘ of covalent histone modifications to cancer. Br. J. Cancer96(Suppl.) , R31–R39 (2007).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4) , 693–705 (2007).
  • Williams K , ChristensenJ, HelinK. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep.13(1) , 28–35 (2011).
  • Boulard M , BouvetP, KunduTK, DimitrovS. Histone variant nucleosomes: structure, function and implication in disease. Subcell Biochem.41 , 71–89 (2007).
  • Banaszynski LA , AllisCD, LewisPW. Histone variants in metazoan development. Dev. Cell19(5) , 662–674 (2011).
  • Pehrson JR , FriedVA. MacroH2A, a core histone containing a large nonhistone region. Science257(5075) , 1398–1400 (1992).
  • Buschbeck M , Di Croce L. Approaching the molecular and physiological function of macroH2A variants. Epigenetics5(2) , 118–123 (2010).
  • Rasmussen TP , HuangT, MastrangeloMA, LoringJ, PanningB, JaenischR. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res.27(18) , 3685–3689 (1999).
  • Chadwick BP , WillardHF. Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum. Mol. Genet.10(10) , 1101–1113 (2001).
  • Costanzi C , PehrsonJR. MACROH2A2, a new member of the MARCOH2A core histone family. J. Biol. Chem.276(24) , 21776–21784 (2001).
  • Chang CC , MaY, JacobsS, TianXC, YangX, RasmussenTP. A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev. Biol.278(2) , 367–380 (2005).
  • Nashun B , YukawaM, LiuH, AkiyamaT, AokiF. Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development137(22) , 3785–3794 (2010).
  • Pehrson JR , CostanziC, DhariaC. Developmental and tissue expression patterns of histone macroH2A1 subtypes. J. Cell Biochem.65(1) , 107–113 (1997).
  • Dai B , RasmussenTP. Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells. Stem Cells25(10) , 2567–2574 (2007).
  • Mietton F , SenguptaAK, MollaA et al. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol. Cell Biol. 29(1) , 150–156 (2009).
  • Creppe C , JanichP, CantariñoN et al. MacroH2A regulates the commitment to differentiation of embryonic and adult stem cells. Mol. Cell Biol. doi:10.1128/MCB.06323-11 (2012) (Epub ahead of print).
  • Buschbeck M , UribesalgoI, WibowoI et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16(10) , 1074–1079 (2009).
  • Changolkar LN , CostanziC, LeuNA, ChenD, McLaughlinKJ, PehrsonJR. Developmental changes in histone macroH2A1-mediated gene regulation. Mol. Cell Biol.27(7) , 2758–2764 (2007).
  • Boulard M , StorckS, CongR, PintoR, DelageH, BouvetP. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenetics Chromatin3(1) , 8 (2010).
  • Tanasijevic B , RasmussenTP. X chromosome inactivation and differentiation occur readily in ES cells doubly-deficient for macroH2A1 and macroH2A2. PLoS ONE6(6) , e21512 (2011).
  • Epsztejn-Litman S , FeldmanN, Abu-RemailehM et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol.15(11) , 1176–1183 (2008).
  • Feldman N , GersonA, FangJ et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8(2) , 188–194 (2006).
  • Chang CC , GaoS, SungLY et al. Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer. Cell Reprogram. 12(1) , 43–53 (2010).
  • Pasque V , GillichA, GarrettN, GurdonJB. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J.30(12) , 2373–2387 (2011).
  • Pasque V , JullienJ, MiyamotoK, Halley-StottRP, GurdonJB. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet.27(12) , 516–525 (2011).
  • Pasque V , Halley-StottRP, GillichA, GarrettN, GurdonJB. Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to xenopus oocytes. Nucleus2(6) , 533–539 (2011).
  • Costanzi C , PehrsonJR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature393(6685) , 599–601 (1998).
  • Changolkar LN , PehrsonJR. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol. Cell Biol.26(12) , 4410–4420 (2006).
  • Changolkar LN , SinghG, CuiK et al. Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol. Cell Biol. 30(23) , 5473–5483 (2010).
  • Gamble MJ , FrizzellKM, YangC, KrishnakumarR, KrausWI. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev.24(1) , 21–32 (2010).
  • Ouararhni K , Hadj-SlimaneR, Ait-Si-AliS et al. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev. 20(23) , 3324–3336 (2006).
  • Azuara V , PerryP, SauerS et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8(5) , 532–538 (2006).
  • Bernstein BE , MikkelsenTS, XieX et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2) , 315–326 (2006).
  • Heard E . Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Dev.15(5) , 482–489 (2005).
  • Silva J , SmithA. Capturing pluripotency. Cell132(4) , 532–536 (2008).
  • Kustatscher G , HothornM, PugieuxC, ScheffzekK, LadurnerAG. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol.12(7) , 624–625 (2005).
  • Timinszky G , TillS, HassaPO et al. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat. Struct. Mol. Biol. 16(9) , 923–929 (2009).
  • Bernstein E , Muratore-SchroederTL, DiazRL et al. A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc. Natl Acad. Sci. USA 105(5) , 1533–1538 (2008).
  • Abbott DW , ChadwickBP, ThambirajahAA, AusioJ. Beyond the Xi: macroH2A chromatin distribution and post-translational modification in an avian system. J. Biol. Chem.280(16) , 16437–16445 (2005).
  • Thambirajah AA , LiA, IshibashiT, AusioJ. New developments in post-translational modifications and functions of histone H2A variants. Biochem. Cell Biol.87(1) , 7–17 (2009).
  • Muthurajan UM , McBryantSJ, LuX, HansenJC, LugerK. The linker region of macroH2A promotes self-association of nucleosomal arrays. J. Biol. Chem.286(27) , 23852–23864 (2011).
  • Kapoor A , GoldbergMS, CumberlandLK et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468(7327) , 1105–1109 (2010).
  • Strizzi L , HardyKM, KirsammerGT, GeramiP, HendrixMJ. Embryonic signaling in melanoma: potential for diagnosis and therapy. Lab. Invest.91(6) , 819–824 (2011).
  • Novikov L , ParkJW, ChenH, KlermanH, JallohAS, GambleMJ. QKI-mediated alternative splicing of the histone variant macroH2A1 regulates cancer cell proliferation. Mol. Cell Biol.31(20) , 4244–4255 (2011).
  • Sporn JC , KustatscherG, HothornT et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28(38) , 3423–3428 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.