337
Views
2
CrossRef citations to date
0
Altmetric
Review

Promoter CpG Island Methylation Markers in Colorectal Cancer: The Road Ahead

, , , , , , , & show all
Pages 179-194 | Published online: 27 Mar 2012

References

  • Jemal A , SiegelR, WardE, HaoY, XuJ, ThunMJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4) , 225–249 (2009).
  • Ferlay J , ShinHR, BrayF, FormanD, MathersC, ParkinDM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer127(12) , 2893–2917 (2010).
  • Jemal A , BrayF, CenterMM, FerlayJ, WardE, FormanD. Global cancer statistics. CA Cancer J. Clin.61(2) , 69–90 (2011).
  • Morris EJ , MaughanNJ, FormanD, QuirkeP. Who to treat with adjuvant therapy in Dukes B/stage II colorectal cancer? The need for high quality pathology. Gut56(10) , 1419–1425 (2007).
  • Jass JR . Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology50(1) , 113–130 (2007).
  • Hughes LA , Khalid-De Bakker CA, Smits KM et al. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim. Biophys. Acta1825(1) , 77–85 (2012).
  • George B , KopetzS. Predictive and prognostic markers in colorectal cancer. Curr. Oncol. Rep.13(3) , 206–215 (2011).
  • Mutch MG . Molecular profiling and risk stratification of adenocarcinoma of the colon. J. Surg. Oncol.96(8) , 693–703 (2007).
  • Walther A , JohnstoneE, SwantonC, MidgleyR, TomlinsonI, KerrD. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer9(7) , 489–499 (2009).
  • Kondo Y , IssaJP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev.23(1–2) , 29–39 (2004).
  • Chan TA , GlocknerS, YiJM et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med. 5(5) , e114 (2008).
  • Smits KM , Cleven a H, Weijenberg MP et al. Pharmacoepigenomics in colorectal cancer: a step forward in predicting prognosis and treatment response. Pharmacogenomics9(12) , 1903–1916 (2008).
  • Bock C . Epigenetic biomarker development. Epigenomics1(1) , 99–110 (2009).
  • Esteller M , FragaMF, GuoM et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet. 10(26) , 3001–3007 (2001).
  • Herman JG , BaylinSB. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349(21) , 2042–2054 (2003).
  • Van Engeland M , DerksS, SmitsKM, MeijerGA, HermanJG. Colorectal cancer epigenetics: complex simplicity. J. Clin. Oncol.29(10) , 1382–1391 (2011).
  • Takai D , JonesPA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99(6) , 3740–3745 (2002).
  • Vucic EA , BrownCJ, LamWL. Epigenetics of cancer progression. Pharmacogenomics9(2) , 215–234 (2008).
  • Okano M , BellDW, HaberDA, LiE. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99(3) , 247–257 (1999).
  • Esteller M . Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet.16(Spec No 1) , R50–R59 (2007).
  • Jost JP , BruhatA. The formation of DNA methylation patterns and the silencing of genes. Prog. Nucleic Acid Res. Mol. Biol.57 , 217–248 (1997).
  • Kim H , ParkJ, JungY et al. DNA methyltransferase 3-like affects promoter methylation of thymine DNA glycosylase independently of DNMT1 and DNMT3B in cancer cells. Int. J. Oncol. 36(6) , 1563–1572 (2010).
  • Turker MS , BestorTH. Formation of methylation patterns in the mammalian genome. Mutat. Res.386(2) , 119–130 (1997).
  • Merlo A , HermanJG, MaoL et al. 5´ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1(7) , 686–692 (1995).
  • Baylin SB , HermanJG, GraffJR, VertinoPM, IssaJP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72 , 141–196 (1998).
  • Bird A . The essentials of DNA methylation. Cell70(1) , 5–8 (1992).
  • Costello JF , FruhwaldMC, SmiragliaDJ et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet. 24(2) , 132–138 (2000).
  • Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene21(35) , 5427–5440 (2002).
  • Irizarry RA , Ladd-AcostaC, WenB et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2) , 178–186 (2009).
  • Doi A , ParkIH, WenB et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41(12) , 1350–1353 (2009).
  • Lopez-Serra L , EstellerM. Proteins that bind methylated DNA and human cancer: reading the wrong words. Br. J. Cancer98(12) , 1881–1885 (2008).
  • Kuroda A , RauchTA, TodorovI et al. Insulin gene expression is regulated by DNA methylation. PLoS ONE 4(9) , e6953 (2009).
  • Hoque MO , KimMS, OstrowKL et al. Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res. 68(8) , 2661–2670 (2008).
  • Momparler RL . Cancer epigenetics. Oncogene22(42) , 6479–6483 (2003).
  • Sharma S , KellyTK, JonesPA. Epigenetics in cancer. Carcinogenesis31(1) , 27–36 (2010).
  • Issa JP . CpG island methylator phenotype in cancer. Nat. Rev. Cancer4(12) , 988–993 (2004).
  • Toyota M , AhujaN, Ohe-ToyotaM, HermanJG, BaylinSB, IssaJP. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA96(15) , 8681–8686 (1999).
  • Tanaka N , HuttenhowerC, NoshoK et al. Novel application of structural equation modeling to correlation structure analysis of CpG island methylation in colorectal cancer. Am. J. Pathol. 177(6) , 2731–2740 (2010).
  • Weisenberger DJ , SiegmundKD, CampanM et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38(7) , 787–793 (2006).
  • Park SJ , RashidA, LeeJH, KimSG, HamiltonSR, WuTT. Frequent CpG island methylation in serrated adenomas of the colorectum. Am. J. Pathol.162(3) , 815–822 (2003).
  • Ogino S , CantorM, KawasakiT et al. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 55(7) , 1000–1006 (2006).
  • Shen L , ToyotaM, KondoY et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl Acad. Sci. USA 104(47) , 18654–18659 (2007).
  • Samowitz WS , AlbertsenH, HerrickJ et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129(3) , 837–845 (2005).
  • Toyota M , Ohe-ToyotaM, AhujaN, IssaJP. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc. Natl Acad. Sci. USA97(2) , 710–715 (2000).
  • Tainsky MA . Cancer biomarker discovery: speed-bumps and tire shredders. Cancer Biomark.6(5–6) , 225–227 (2010).
  • Issaq HJ , WaybrightTJ, VeenstraTD. Cancer biomarker discovery: Opportunities and pitfalls in analytical methods. Electrophoresis32(9) , 967–975 (2011).
  • Crea F , NobiliS, PaolicchiE et al. Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist. Updat. 14(6) , 280–296 (2011).
  • Naylor S . Biomarkers: current perspectives and future prospects. Expert Rev. Mol. Diagn.3(5) , 525–529 (2003).
  • Perera FP , WeinsteinIB. Molecular epidemiology: recent advances and future directions. Carcinogenesis21(3) , 517–524 (2000).
  • Vineis P , PereraF. Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old. Cancer Epidemiol. Biomarkers Prev.16(10) , 1954–1965 (2007).
  • Levin B , LiebermanDA, McfarlandB et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology 134(5) , 1570–1595 (2008).
  • Gatto NM , FruchtH, SundararajanV, JacobsonJS, GrannVR, NeugutAI. Risk of perforation after colonoscopy and sigmoidoscopy: a population-based study. J. Natl Cancer Inst.95(3) , 230–236 (2003).
  • Frazier a L , ColditzGA, FuchsCS, KuntzKM. Cost–effectiveness of screening for colorectal cancer in the general population. JAMA284(15) , 1954–1961 (2000).
  • Imperiale TF , RansohoffDF, ItzkowitzSH, TurnbullBA, RossME. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med.351(26) , 2704–2714 (2004).
  • Bosch LJ , CarvalhoB, FijnemanRJ et al. Molecular tests for colorectal cancer screening. Clin. Colorectal Cancer 10(1) , 8–23 (2011).
  • Chen WD , HanZJ, SkoletskyJ et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J. Natl Cancer Inst. 97(15) , 1124–1132 (2005).
  • Itzkowitz S , BrandR, JandorfL et al. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am. J. Gastroenterol. 103(11) , 2862–2870 (2008).
  • Itzkowitz SH , JandorfL, BrandR et al. Improved fecal DNA test for colorectal cancer screening. Clin. Gastroenterol. Hepatol. 5(1) , 111–117 (2007).
  • Li M , ChenWD, PapadopoulosN et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27(9) , 858–863 (2009).
  • Ahlquist DA , SkoletskyJE, BoyntonKA et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119(5) , 1219–1227 (2000).
  • Ned RM , MelilloS, MarroneM. Fecal DNA testing for colorectal cancer screening: the ColoSure™ test. PLoS Curr.3 , RRN1220 (2011).
  • Huang Z , LiL, WangJ. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig. Dis. Sci.52(9) , 2287–2291 (2007).
  • Wang DR , TangD. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J. Gastroenterol.14(4) , 524–531 (2008).
  • Oberwalder M , ZittM, WontnerC et al. SFRP2 methylation in fecal DNA – a marker for colorectal polyps. Int. J. Colorectal Dis. 23(1) , 15–19 (2008).
  • Nagasaka T , TanakaN, CullingsHM et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl Cancer Inst. 101(18) , 1244–1258 (2009).
  • Zhang W , BauerM, CronerRS et al. DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. Dis. Colon Rectum 50(10) , 1618–1626; discussion 1626–1617 (2007).
  • Lenhard K , BommerGT, AsutayS et al. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin. Gastroenterol. Hepatol. 3(2) , 142–149 (2005).
  • Petko Z , GhiassiM, ShuberA et al. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin. Cancer Res. 11(3) , 1203–1209 (2005).
  • Leung WK , ToKF, ManEP et al. Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps. Am. J. Gastroenterol. 102(5) , 1070–1076 (2007).
  • Melotte V , LentjesMH, Van Den Bosch SM et al. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl Cancer Inst.101(13) , 916–927 (2009).
  • Hellebrekers DM , LentjesMH, Van Den Bosch SM et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin. Cancer Res.15(12) , 3990–3997 (2009).
  • Glöckner SC , DhirM, YiJM et al. Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res. 69(11) , 4691–4699 (2009).
  • Kim MS , LouwagieJ, CarvalhoB et al. Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. PLoS ONE 4(8) , e6555 (2009).
  • Bosch LJ , OortFA, NeerincxM et al. DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements FIT. Cancer Prev. Res. (Phila.) 5(3) , 464–472 (2012).
  • Ahlquist DA , ZouH, DomanicoM et al. Next-generation stool DNA test accurately detects colorectal cancer or large adenomas. Gastroenterology 142(2) , 248–256 (2011).
  • Leung WK , ToKF, ManEP et al. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am. J. Gastroenterol. 100(10) , 2274–2279 (2005).
  • Ebert MP , ModelF, MooneyS et al. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 131(5) , 1418–1430 (2006).
  • Lofton-Day C , ModelF, DevosT et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54(2) , 414–423 (2008).
  • Herbst A , RahmigK, StieberP et al. Methylation of NEUROG1 in serum is a sensitive marker for the detection of early colorectal cancer. Am. J. Gastroenterol. 106(6) , 1110–1118 (2011).
  • Devos T , TetznerR, ModelF et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem. 55(7) , 1337–1346 (2009).
  • Payne SR . From discovery to the clinic: the novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics2(4) , 575–585 (2010).
  • Tanzer M , BalluffB, DistlerJ et al. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE 5(2) , e9061 (2010).
  • Warren JD , XiongW, Bunker a M et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med.9(1) , 133 (2011).
  • Tang D , LiuJ, WangDR, YuHF, LiYK, ZhangJQ. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin. Invest. Med.34(2) , E88–E95 (2011).
  • Ahlquist DA , TaylorWR, MahoneyDW et al. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin. Gastroenterol. Hepatol. 10(3) , 272–277 (2012).
  • Deschoolmeester V , BaayM, SpecenierP, LardonF, VermorkenJB. A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist15(7) , 699–731 (2010).
  • Graziano F , CascinuS. Prognostic molecular markers for planning adjuvant chemotherapy trials in Dukes‘ B colorectal cancer patients: how much evidence is enough? Ann. Oncol.14(7) , 1026–1038 (2003).
  • Klump B , NehlsO, OkechT et al. Molecular lesions in colorectal cancer: impact on prognosis? Original data and review of the literature. Int. J. Colorectal Dis. 19(1) , 23–42 (2004).
  • Belt EJ , Van Stijn MF, Bril H et al. Lymph node negative colorectal cancers with isolated tumor deposits should be classified and treated as stage III. Ann. Surg. Oncol.17(12) , 3203–3211 (2010).
  • George S , PrimroseJ, TalbotR et al. Will Rogers revisited: prospective observational study of survival of 3592 patients with colorectal cancer according to number of nodes examined by pathologists. Br. J. Cancer 95(7) , 841–847 (2006).
  • Nosho K , BabaY, TanakaN et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J. Pathol. 222(4) , 350–366 (2010).
  • Prall F , NizzeH, BartenM. Tumour budding as prognostic factor in stage I/II colorectal carcinoma. Histopathology47(1) , 17–24 (2005).
  • Pritchard CC , GradyWM. Colorectal cancer molecular biology moves into clinical practice. Gut60(1) , 116–129 (2011).
  • Fretwell VL , AngCW, TweedleEM, RooneyPS. The impact of lymph node yield on Duke‘s B and C colorectal cancer survival. Colorectal Dis.12(10) , 995–1000 (2010).
  • Chau I , AllenMJ, CunninghamD et al. The value of routine serum carcino-embryonic antigen measurement and computed tomography in the surveillance of patients after adjuvant chemotherapy for colorectal cancer. J. Clin. Oncol. 22(8) , 1420–1429 (2004).
  • Oussoultzoglou E , RossoE, FuchshuberP et al. Perioperative carcinoembryonic antigen measurements to predict curability after liver resection for colorectal metastases: a prospective study. Arch. Surg. 143(12) , 1150–1158; discussion 1158–1159 (2008).
  • Tan E , GouvasN, NichollsRJ, ZiprinP, XynosE, TekkisPP. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg. Oncol.18(1) , 15–24 (2009).
  • Kelley RK , Venook a P. Prognostic and predictive markers in stage II colon cancer: is there a role for gene expression profiling? Clin. Colorectal Cancer10(2) , 73–80 (2011).
  • Umetani N , TakeuchiH, FujimotoA, ShinozakiM, Bilchik a J, Hoon DS. Epigenetic inactivation of ID4 in colorectal carcinomas correlates with poor differentiation and unfavorable prognosis. Clin. Cancer Res.10(22) , 7475–7483 (2004).
  • Tanaka M , ChangP, LiY et al. Association of CHFR promoter methylation with disease recurrence in locally advanced colon cancer. Clin. Cancer Res. 17(13) , 4531–4540 (2011).
  • Krtolica K , KrajnovicM, Usaj-KnezevicS, BabicD, JovanovicD, DimitrijevicB. Comethylation of p16 and MGMT genes in colorectal carcinoma: correlation with clinicopathological features and prognostic value. World J. Gastroenterol.13(8) , 1187–1194 (2007).
  • Whitehall VL , WalshMD, YoungJ, LeggettBA, JassJR. Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res.61(3) , 827–830 (2001).
  • Xu XL , YuJ, ZhangHY et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J. Gastroenterol. 10(23) , 3441–3454 (2004).
  • Ogino S , NoshoK, KirknerGJ et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58(1) , 90–96 (2009).
  • Shima K , MorikawaT, BabaY et al. MGMT promoter methylation, loss of expression and prognosis in 855 colorectal cancers. Cancer Causes Control 22(2) , 301–309 (2011).
  • Kohonen-Corish MR , DanielJJ, ChanC et al. Low microsatellite instability is associated with poor prognosis in stage C colon cancer. J. Clin. Oncol. 23(10) , 2318–2324 (2005).
  • Mokarram P , KumarK, BrimH et al. Distinct high-profile methylated genes in colorectal cancer. PLoS ONE 4(9) , e7012 (2009).
  • Yi JM , DhirM, Van Neste L et al. Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin. Cancer Res.17(6) , 1535–1545 (2011).
  • Ahn JB , ChungWB, MaedaO et al. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer 117(9) , 1847–1854 (2011).
  • Ward RL , CheongK, KuSL, MeagherA, O‘connorT, HawkinsNJ. Adverse prognostic effect of methylation in colorectal cancer is reversed by microsatellite instability. J. Clin. Oncol.21(20) , 3729–3736 (2003).
  • Barault L , Charon-BarraC, JoosteV et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 68(20) , 8541–8546 (2008).
  • Saltz LB , NiedzwieckiD, HollisD et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J. Clin. Oncol. 25(23) , 3456–3461 (2007).
  • Edwards MS , ChaddaSD, ZhaoZ, BarberBL, SykesDP. A systematic review of treatment guidelines for metastatic colorectal cancer. Colorectal Dis.14(2) , e31–e47 (2012).
  • Goldberg RM . Therapy for metastatic colorectal cancer. Oncologist11(9) , 981–987 (2006).
  • Tejpar S , BertagnolliM, BosmanF et al. Prognostic and predictive biomarkers in resected colon cancer: current status and future perspectives for integrating genomics into biomarker discovery. Oncologist 15(4) , 390–404 (2010).
  • Simon R . Development and validation of biomarker classifiers for treatment selection. J. Stat. Plan. Inference138(2) , 308–320 (2008).
  • Amado RG , WolfM, PeetersM et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26(10) , 1626–1634 (2008).
  • Di Fiore F , BlanchardF, CharbonnierF et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br. J. Cancer 96(8) , 1166–1169 (2007).
  • Lievre A , BachetJB, Le Corre D et al.KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res.66(8) , 3992–3995 (2006).
  • Boland CR , GoelA. Microsatellite instability in colorectal cancer. Gastroenterology138(6) , 2073–2087.e3 (2010).
  • Des Guetz G , SchischmanoffO, NicolasP, PerretGY, MorereJF, UzzanB. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur. J. Cancer45(10) , 1890–1896 (2009).
  • Bertagnolli MM , NiedzwieckiD, ComptonCC et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol. 27(11) , 1814–1821 (2009).
  • Fallik D , BorriniF, BoigeV et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 63(18) , 5738–5744 (2003).
  • Popat S , HubnerR, HoulstonRS. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol.23(3) , 609–618 (2005).
  • Ogino S , MeyerhardtJA, KawasakiT et al. CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch. 450(5) , 529–537 (2007).
  • Shen L , CatalanoPJ, BensonAB 3rd, O‘Dwyer P, Hamilton SR, Issa JP. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin. Cancer Res.13(20) , 6093–6098 (2007).
  • Jover R , NguyenTP, Perez-CarbonellL et al. 5-fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology 140(4) , 1174–1181 (2011).
  • Esteller M , HermanJG. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene23(1) , 1–8 (2004).
  • Jacinto FV , EstellerM. MGMT hypermethylation: a prognostic foe, a predictive friend. DNA Repair (Amst.)6(8) , 1155–1160 (2007).
  • Agrelo R , ChengWH, SetienF et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl Acad. Sci. USA 103(23) , 8822–8827 (2006).
  • Kawasaki T , OhnishiM, SuemotoY et al. WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod. Pathol.21(2) , 150–158 (2008).
  • Laird PW . The power and the promise of DNA methylation markers. Nat. Rev. Cancer3(4) , 253–266 (2003).
  • Shivapurkar N , Gazdar a F. DNA methylation based biomarkers in non-invasive cancer screening. Curr. Mol. Med.10(2) , 123–132 (2010).
  • Esteller M , Sanchez-CespedesM, RosellR, SidranskyD, BaylinSB, HermanJG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res.59(1) , 67–70 (1999).
  • Bailey VJ , EaswaranH, ZhangY et al. MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res. 19(8) , 1455–1461 (2009).
  • Rifai N , GilletteMA, CarrSA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol.24(8) , 971–983 (2006).
  • Jeddeloh JA , GreallyJM, RandoOJ. Reduced-representation methylation mapping. Genome Biol.9(8) , 231 (2008).
  • Oda M , GlassJL, ThompsonRF et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 37(12) , 3829–3839 (2009).
  • Kibriya MG , RazaM, JasmineF et al. A genome-wide DNA methylation study in colorectal carcinoma. BMC Med. Genomics 4 , 50 (2011).
  • Herman JG , GraffJR, MyohanenS, NelkinBD, BaylinSB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93(18) , 9821–9826 (1996).
  • Eads CA , DanenbergKD, KawakamiK et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28(8) , E32 (2000).
  • Tost J , GutIG. DNA methylation analysis by pyrosequencing. Nat. Protoc.2(9) , 2265–2275 (2007).
  • Gonzalgo ML , LiangG. Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nat. Protoc.2(8) , 1931–1936 (2007).
  • Brena RM , AuerH, KornackerK, PlassC. Quantification of DNA methylation in electrofluidics chips (Bio-COBRA). Nat. Protoc.1(1) , 52–58 (2006).
  • Ehrich M , NelsonMR, StanssensP et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA 102(44) , 15785–15790 (2005).
  • Van Vlodrop IJ , NiessenHE, DerksS et al. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin. Cancer Res. 17(13) , 4225–4231 (2011).
  • Mischak H , AllmaierG, ApweilerR et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci. Transl. Med. 2(46) , 46ps42 (2010).
  • Dancey JE , DobbinKK, GroshenS et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin. Cancer Res. 16(6) , 1745–1755 (2010).
  • Williams SA , SlavinDE, WagnerJA, WebsterCJ. A cost–effectiveness approach to the qualification and acceptance of biomarkers. Nat. Rev. Drug Discov.5(11) , 897–902 (2006).
  • Sawyers CL . The cancer biomarker problem. Nature452(7187) , 548–552 (2008).
  • Diamandis EP . Cancer biomarkers: can we turn recent failures into success? J. Natl Cancer Inst.102(19) , 1462–1467 (2010).
  • Luo YX , ChenDK, SongSX, WangL, WangJP. Aberrant methylation of genes in stool samples as diagnostic biomarkers for colorectal cancer or adenomas: a meta-analysis. Int. J. Clin. Pract.65(12) , 1313–1320 (2011).
  • Hopewell S , LoudonK, ClarkeMJ, Oxman a D, Dickersin K. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst. Rev.1 , MR000006 (2009).
  • Ioannidis JP , TrikalinosTA. An exploratory test for an excess of significant findings. Clin. Trials4(3) , 245–253 (2007).
  • Kyzas PA , LoizouKT, IoannidisJP. Selective reporting biases in cancer prognostic factor studies. J. Natl Cancer Inst.97(14) , 1043–1055 (2005).
  • Debauve G , CapouillezA, BelayewA, SaussezS. The helicase-like transcription factor and its implication in cancer progression. Cell. Mol. Life Sci.65(4) , 591–604 (2008).
  • Mccart a E , VickaryousNK, SilverA. Apc mice: models, modifiers and mutants. Pathol. Res. Pract.204(7) , 479–490 (2008).
  • Mohammad HP , ZhangW, PrevasHS et al. Loss of a single Hic1 allele accelerates polyp formation in Apc(Delta716) mice. Oncogene 30(23) , 2659–2669 (2011).
  • Wales MM , BielMA, El Deiry W et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat. Med.1(6) , 570–577 (1995).
  • McShane LM , AltmanDG, SauerbreiW, TaubeSE, GionM, ClarkGM. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat. Clin. Pract. Oncol.2(8) , 416–422 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.