143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenetic Regulation of Sox4 during Palate Development

, , , , &
Pages 131-146 | Published online: 08 Apr 2013

References

  • Yazdy MM , HoneinMA, RasmussenSA, FriasJ. Priorities for future public health research in orofacial clefts. Cleft Palate Craniofac. J.44(4) , 351–357 (2007).
  • Gritli-Linde A . Molecular control of secondary palate development. Dev. Biol.301(2) , 309–326 (2007).
  • Juriloff DM , HarrisMJ. Mouse genetic models of cleft lip with or without cleft palate. Birth Defects Res. A Clin. Mol. Teratol.82(2) , 63–77 (2008).
  • Lidral AC , MorenoLM. Progress toward discerning the genetics of cleft lip. Curr. Opin. Pediatr.17(6) , 731–739 (2005).
  • Carinci F , ScapoliL, PalmieriA, ZollinoI, PezzettiF. Human genetic factors in nonsyndromic cleft lip and palate: an update. Int. J. Pediatr. Otorhinolaryngol.71(10) , 1509–1519 (2007).
  • Jugessur A , FarliePG, KilpatrickN. The genetics of isolated orofacial clefts: from genotypes to subphenotypes. Oral. Dis.15(7) , 437–453 (2009).
  • Vieira AR . Unraveling human cleft lip and palate research. J. Dent. Res.87(2) , 119–125 (2008).
  • Greene RM , PisanoMM. Palate morphogenesis: current understanding and future directions. Birth Defects Res. C Embryo Today90(2) , 133–154 (2010).
  • He F , XiongW, WangY et al. Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis. Dev. Biol. 347(1) , 109–121 (2010).
  • Trainor PA . Craniofacial birth defects: the role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am. J. Med. Genet. A152A(12) , 2984–2994 (2010).
  • Marazita ML . Genetic etiologies of facial clefting. In: Understanding Craniofacial Anomalies: The Etiopathogenesis of Craniosynostoses and Facial Clefting. Mooney MP, Siegel MI (Eds). Wiley-Liss, NY, USA, 147–161 (2002).
  • Mossey PA , LittleJ, MungerRG, DixonMJ, ShawWC. Cleft lip and palate. Lancet374(9703) , 1773–1785 (2009).
  • Zhu H , KartikoS, FinnellRH. Importance of gene–environment interactions in the etiology of selected birth defects. Clin. Genet.75(5) , 409–423 (2009).
  • Mukhopadhyay P , GreeneRM, PisanoMM. Expression profiling of TGFβ superfamily genes in developing orofacial tissue. Birth Defects Res. A Clin. Mol. Teratol.76(7) , 528–543 (2006).
  • Penzo-Mendez AI . Critical roles for SoxC transcription factors in development and cancer. Int. J. Biochem. Cell Biol.42(3) , 425–428 (2010).
  • Moreno CS . The sex-determining region Y-Box 4 and homeobox C6 transcriptional networks in prostate cancer progression. Crosstalk with the Wnt, Notch and PI3K pathways. Am. J. Pathol.176(2) , 518–527 (2010).
  • Ikushima H , TodoT, InoY, TakahashiM, MiyazawaK, MiyazonoK. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell5(5) , 504–514 (2009).
  • Jafarnejad SM , ArdekaniGS, GhaffariM, LiG. Pleiotropic function of SRY-related HMG box transcription factor 4 in regulation of tumorigenesis. Cell. Mol. Life Sci. doi:10.1007/s00018-012-1187-y (2012) (Epub ahead of print).
  • Ruebel KH , LeontovichAA, TanizakiY et al. Effects of TGFβ1 on gene expression in the HP75 human pituitary tumor cell line identified by gene expression profiling. Endocrine 33(1) , 62–76 (2008).
  • Tavazoie SF , AlarconC, OskarssonT et al. Endogenous human microRNAs that suppress breast cancer metastases. Nature 451(7175) , 147–152 (2008).
  • Negrini M , CalinGA. Breast cancer metastasis: a microRNA story. Breast Cancer Res.10(2) , 203 (2008).
  • Huang YW , LiuJC, DeatherageDE et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 69(23) , 9038–9046 (2009).
  • Andersen CL , ChristensenLL, ThorsenK et al. Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br. J. Cancer 100(3) , 511–523 (2009).
  • Medina PP , CastilloSD, BlancoS et al. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum. Mol. Genet. 18(7) , 1343–1352 (2009).
  • de Bont JM , KrosJM, PassierMM et al. Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro Oncol. 10(5) , 648–660 (2008).
  • Iwata J , ParadaC, ChaiY. The mechanism of TGF-β signaling during palate development. Oral Dis.17(8) , 733–744 (2011).
  • Bush JO , JiangR. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development139(2) , 231–243 (2012).
  • Meng L , BianZ, TorensmaR, Von den Hoff JW. Biological mechanisms in palatogenesis and cleft palate. J. Dent. Res.88(1) , 22–33 (2009).
  • Warner DR , SmithHS, WebbCL, GreeneRM, PisanoMM. Expression of Wnts in the developing murine secondary palate. Int. J. Dev. Biol.53(7) , 1105–1112 (2009).
  • Mukhopadhyay P , BrockG, PihurV, WebbC, PisanoMM, GreeneRM. Developmental microRNA expression profiling of murine embryonic orofacial tissue. Birth Defects Res. A Clin. Mol. Teratol.88(7) , 511–534 (2010).
  • Clark SJ , HarrisonJ, PaulCL, FrommerM. High sensitivity mapping of methylated cytosines. Nucleic Acids Res.22(15) , 2990–2997 (1994).
  • Aranyi T , TusnadyGE. BiSearch: ePCR tool for native or bisulfite-treated genomic template. Methods Mol. Biol.402 , 385–402 (2007).
  • Singh S , GreeneRM, PisanoMM. Arsenate-induced apoptosis in murine embryonic maxillary mesenchymal cells via mitochondrial-mediated oxidative injury. Birth Defects Res. A Clin. Mol. Teratol.88(1) , 25–34 (2010).
  • Klug M , RehliM. Functional analysis of promoter CpG Methylation using a CpG-free luciferase reporter vector. Epigenetics1(3) , 127–130 (2006).
  • Seelan RS , PisanoMM, GreeneRM, CasanovaMF, ParthasarathyR. Differential methylation of the gene encoding myo-inositol synthase (Isyna1) in rat tissues. Epigenomics3(1) , 111–124 (2011).
  • Dy P , Penzo-MéndezA, WangH, PedrazaCE, MacklinWB, LefebvreV. The three SoxC proteins – Sox4, Sox11 and Sox12 – exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res.36(9) , 3101–3117 (2008).
  • Sock E , RettigSD, EnderichJ, BöslMR, TammER, WegnerM. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol. Cell Biol.24(15) , 6635–6644 (2004).
  • Bhattaram P , Penzo-MéndezA, SockE et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat. Commun. 1 , 9 (2010).
  • Goldsworthy M , HugillA, FreemanH et al. Role of the transcription factor Sox4 in insulin secretion and impaired glucose tolerance. Diabetes 57(8) , 2234–2244 (2008).
  • Ya J , SchilhamMW, de Boer PA, Moorman AF, Clevers H, Lamers WH. Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ. Res.83(10) , 986–994 (1998).
  • Hoser M , PotznerMR, KochJMC, BoslMR, WegnerM, SockE. Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcriptional factors. Mol. Cell Biol.28(15) , 4675–4687 (2008).
  • Nissen-Meyer LS , JemtlandR, GautvikVT et al. Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J. Cell Sci. 120(Pt 16) , 2785–2795 (2007).
  • Hoser M , BaaderSL, BoslMR et al. Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. J. Neurosci. 27(20) , 5495–5505 (2007).
  • Potzner MR , GriffelC, Lütjen-DrecollE, BöslMR, WegnerM, SockE. Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system. Mol. Cell Biol.27(15) , 5316–5326 (2007).
  • Thein DC , ThalhammerJM, HartwigAC et al. The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. J. Neurochem. 115(1) , 131–141 (2010).
  • Mukhopadhyay P , WebbCL, WarnerDR, GreeneRM, PisanoMM. BMP signaling dynamics in embryonic orofacial tissue. J. Cell. Physiol.216(3) , 771–779 (2008).
  • Parada C , ChaiY. Roles of BMP signaling pathway in lip and palate development. Front. Oral Biol.16 , 60–70 (2012).
  • Iordanskaia T , NawshadA. Mechanisms of transforming growth factor β induced cell cycle arrest in palate development. J. Cell. Physiol.226(5) , 1415–1424 (2011).
  • Yu W , RuestLB, SvobodaKK. Regulation of epithelial-mesenchymal transition in palatal fusion. Exp. Biol. Med. (Maywood)234(5) , 483–491 (2009).
  • Iwata J , ParadaC, ChaiY. The mechanism of TGF-β signaling during palate development. Oral Dis.17(8) , 733–744 (2011).
  • d‘Amaro R , ScheideggerR, BlumerS et al. Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis. Front. Physiol. 3 , 377 (2012).
  • Iwata J , HaciaJG, SuzukiA, Sanchez-LaraPA, UrataM, ChaiY. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice. J. Clin. Invest.122(3) , 873–885 (2012).
  • de Oliveira Demarchi AC , ZambuzziWF, PaivaKB et al. Development of secondary palate requires strict regulation of ECM remodeling: sequential distribution of RECK, MMP-2, MMP-3, and MMP-9. Cell Tissue Res. 340(1) , 61–69 (2010).
  • Carette MJ , FergusonMW. The fate of medial edge epithelial cells during palatal fusion in vitro: an analysis by DiI labeling and confocal microscopy. Development114(2) , 379–388 (1992).
  • Pantalacci S , ProchazkaJ, MartinA et al. Patterning of palatal rugae through sequential addition reveals an anterior/posterior boundary in palatal development. BMC Dev. Biol. 8 , 116 (2008).
  • Porntaveetus T , OommenS, SharpePT, OhazamaA. Expression of Fgf signalling pathway related genes during palatal rugae development in the mouse. Gene Expr. Patterns10(4–5) , 193–198 (2010).
  • Welsh IC , O‘BrienTP. Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate. Dev. Biol.336(1) , 53–67 (2009).
  • Lin C , FisherAV, YinY et al. The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus. Dev. Biol. 356(1) , 40–50 (2011).
  • Sinner D , KordichJJ, SpenceJR et al. Sox17 and Sox4 differentially regulate β-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol. Cell Biol. 27(22) , 7802–7815 (2007).
  • Lee AK , AhnSG, YoonJH, KimSA. Sox4 stimulates β-catenin activity through induction of CK2. Oncol. Rep.25(2) , 559–565 (2011).
  • Widera D , ZanderC, HeidbrederM et al. Adult palatum as a novel source of neural crest-related stem cells. Stem Cells 27(8) , 1899–1910 (2009).
  • Stadler MB , MurrR, BurgerL et al. NA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378) , 490–495 (2011).
  • Irizarry RA , Ladd-AcostaC, WenB et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2) , 178–186 (2009).
  • Nikopensius T , KempaI, AmbrozaitytėL et al. Variation in FGF1, FOXE1, and TIMP2 genes is associated with nonsyndromic cleft lip with or without cleft palate. Birth Defects Res. A Clin. Mol. Teratol. 91(4) , 218–225 (2011).
  • Vreeburg M , HeitinkMV, DamstraRJ, MoogU, van Geel M, van Steensel MA. Lymphedema-distichiasis syndrome: a distinct type of primary lymphedema caused by mutations in the FOXC2 gene. Int. J. Dermatol.47(Suppl. 1) , S52–S55 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.