359
Views
0
CrossRef citations to date
0
Altmetric
Review

Transcriptional and Epigenetic Networks in the Development and Maturation of Dendritic Cells

, , &
Pages 195-204 | Published online: 08 Apr 2013

References

  • Kanno Y , VahediG, HiraharaK, SingletonK, O‘SheaJJ. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Ann. Rev. Immunol.30 , 707–731 (2012).
  • Fisher CL , FisherAG. Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr. Opin. Genet. Dev.21(2) , 140–146 (2011).
  • Miller JC , BrownBD, ShayT et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Rev. Immunol. 13(9) , 888–899 (2012).
  • Steinman RM . Decisions about dendritic cells: past, present, and future. Ann. Rev. Immunol.30 , 1–22 (2012).
  • Geissmann F , ManzMG, JungS, SiewekeMH, MeradM, LeyK. Development of monocytes, macrophages, and dendritic cells. Science327(5966) , 656–661 (2010).
  • Trombetta ES , MellmanI. Cell biology of antigen processing in vitro and in vivo. Ann. Rev. Immunol.23 , 975–1028 (2005).
  • Randolph GJ , AngeliV, SwartzMA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol.5(8) , 617–628 (2005).
  • Morelli AE , ThomsonAW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol.7(8) , 610–621 (2007).
  • Heath WR , CarboneFR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Rev. Immunol.10(12) , 1237–1244 (2009).
  • Shortman K , LiuYJ. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol.2(3) , 151–161 (2002).
  • Steinman RM , CohnZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med.137(5) , 1142–1162 (1973).
  • Den Haan JM , LeharSM, BevanMJ. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med.192(12) , 1685–1696 (2000).
  • Pooley JL , HeathWR, ShortmanK. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol.166(9) , 5327–5330 (2001).
  • Dudziak D , KamphorstAO, HeidkampGF et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315(5808) , 107–111 (2007).
  • Kamphorst AO , GuermonprezP, DudziakD, NussenzweigMC. Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes. J. Immunol.185(6) , 3426–3435 (2010).
  • Helft J , GinhouxF, BogunovicM, MeradM. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol. Rev.234(1) , 55–75 (2010).
  • Liu K , NussenzweigMC. Origin and development of dendritic cells. Immunol. Rev.234(1) , 45–54 (2010).
  • Belz GT , SmithCM, KleinertL et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA 101(23) , 8670–8675 (2004).
  • Bedoui S , WhitneyPG, WaithmanJ et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Rev. Immunol. 10(5) , 488–495 (2009).
  • Reizis B , BuninA, GhoshHS, LewisKL, SisirakV. Plasmacytoid dendritic cells: recent progress and open questions. Ann. Rev. Immunol.29 , 163–183 (2011).
  • Reizis B , ColonnaM, TrinchieriG, BarratF, GillietM. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nat. Rev. Immunol.11(8) , 558–565 (2011).
  • Grouard G , RissoanMC, FilgueiraL, DurandI, BanchereauJ, LiuYJ. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med.185(6) , 1101–1111 (1997).
  • Blasius AL , GiurisatoE, CellaM, SchreiberRD, ShawAS, ColonnaM. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J. Immunol.177(5) , 3260–3265 (2006).
  • Zhang J , RaperA, SugitaN et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107(9) , 3600–3608 (2006).
  • Dzionek A , SohmaY, NagafuneJ et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J. Exp. Med. 194(12) , 1823–1834 (2001).
  • Auffray C , SiewekeMH, GeissmannF. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Ann. Rev. Immunol.27 , 669–692 (2009).
  • Inaba K , InabaM, RomaniN et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176(6) , 1693–1702 (1992).
  • Sallusto F , LanzavecchiaA. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med.179(4) , 1109–1118 (1994).
  • Cheong C , MatosI, ChoiJH et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143(3) , 416–429 (2010).
  • D‘amico A , WuL. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med.198(2) , 293–303 (2003).
  • Fogg DK , SibonC, MiledC et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311(5757) , 83–87 (2006).
  • Onai N , Obata-OnaiA, SchmidMA, OhtekiT, JarrossayD, ManzMG. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol.8(11) , 1207–1216 (2007).
  • Naik SH , SatheP, ParkHY et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8(11) , 1217–1226 (2007).
  • Naik SH , MetcalfD, Van Nieuwenhuijze A et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol.7(6) , 663–671 (2006).
  • Liu K , VictoraGD, SchwickertTA et al. In vivo analysis of dendritic cell development and homeostasis. Science324(5925) , 392–397 (2009).
  • Bogunovic M , GinhouxF, HelftJ et al. Origin of the lamina propria dendritic cell network. Immunity 31(3) , 513–525 (2009).
  • Amit I , GarberM, ChevrierN et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326(5950) , 257–263 (2009).
  • Garber M , YosefN, GorenA et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47(5) , 810–822 (2012).
  • Bennett CL , ClausenBE. DC ablation in mice: promises, pitfalls, and challenges. Trends Immunol.28(12) , 525–531 (2007).
  • Probst HC , TschannenK, OdermattB, SchwendenerR, ZinkernagelRM, Van Den Broek M. Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin. Exp. Immunol.141(3) , 398–404 (2005).
  • Hume DA . Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity. J. Leukocyte Biol.89(4) , 525–538 (2011).
  • Van Rijt LS , JungS, KleinjanA et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med.201(6) , 981–991 (2005).
  • Reizis B . Regulation of plasmacytoid dendritic cell development. Curr. Opin. Immunol.22(2) , 206–211 (2010).
  • Meredith MM , LiuK, Darrasse-JezeG et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209(6) , 1153–1165 (2012).
  • Satpathy AT , KcW, AlbringJC et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209(6) , 1135–1152 (2012).
  • Waskow C , LiuK, Darrasse-JezeG et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9(6) , 676–683 (2008).
  • Lyman SD , JamesL, EscobarS et al. Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs. Oncogene 10(1) , 149–157 (1995).
  • Ohl L , MohauptM, CzelothN et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21(2) , 279–288 (2004).
  • Jelinek I , LeonardJN, PriceGE et al. TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J. Immunol. 186(4) , 2422–2429 (2011).
  • Dorner BG , DornerMB, ZhouX et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31(5) , 823–833 (2009).
  • Sharpe AH , WherryEJ, AhmedR, FreemanGJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol.8(3) , 239–245 (2007).
  • Travis MA , ReizisB, MeltonAC et al. Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449(7160) , 361–365 (2007).
  • Posselt G , SchwarzH, DuschlA, Horejs-HoeckJ. Suppressor of cytokine signaling 2 is a feedback inhibitor of TLR-induced activation in human monocyte-derived dendritic cells. J. Immunol.187(6) , 2875–2884 (2011).
  • Yagil Z , NechushtanH, KayG, YangCM, KemenyDM, RazinE. The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response. Trends Immunol.31(5) , 199–204 (2010).
  • Minas K , LiversidgeJ. Is the CD200/CD200 receptor interaction more than just a myeloid cell inhibitory signal? Crit. Rev. Immunol.26(3) , 213–230 (2006).
  • Chen M , WangYH, WangY et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311(5764) , 1160–1164 (2006).
  • Qi R , LiuM, GaoXH et al. Histone deacetylase activity is required for skin Langerhans cell maturation and phagocytosis. J. Dermatol. Sci. 65(2) , 152–155 (2012).
  • Nencioni A , BeckJ, WerthD et al. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin. Cancer. Res. 13(13) , 3933–3941 (2007).
  • Frikeche J , SimonT, BrissotE, GregoireM, GauglerB, MohtyM. Impact of valproic acid on dendritic cells function. Immunobiology217(7) , 704–710 (2012).
  • Jung ID , LeeJS, JeongYI et al. Apicidin, the histone deacetylase inhibitor, suppresses Th1 polarization of murine bone marrow-derived dendritic cells. Int. J. Immunopathol. Pharmacol. 22(2) , 501–515 (2009).
  • Reddy P , SunY, ToubaiT et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest. 118(7) , 2562–2573 (2008).
  • Bode KA , SchroderK, HumeDA et al. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology 122(4) , 596–606 (2007).
  • Brogdon JL , XuY, SzaboSJ et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 109(3) , 1123–1130 (2007).
  • Song W , TaiYT, TianZ et al. HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia 25(1) , 161–168 (2011).
  • Reddy P , MaedaY, HotaryK et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl Acad. Sci. USA 101(11) , 3921–3926 (2004).
  • Leoni F , ZalianiA, BertoliniG et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl Acad. Sci. USA 99(5) , 2995–3000 (2002).
  • Wen H , DouY, HogaboamCM, KunkelSL. Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood111(4) , 1797–1804 (2008).
  • Bluml S , ZupkovitzG, KirchbergerS et al. Epigenetic regulation of dendritic cell differentiation and function by oxidized phospholipids. Blood 114(27) , 5481–5489 (2009).
  • Tserel L , KoldeR, RebaneA et al. Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells. BMC Genomics 11 , 642 (2010).
  • Tian Y , JiaZ, WangJ et al. Global mapping of H3K4me1 and H3K4me3 reveals the chromatin state-based cell type-specific gene regulation in human Treg cells. PloS One 6(11) , e27770 (2011).
  • Huang Y , MinS, LuiY et al. Global mapping of H3K4me3 and H3K27me3 reveals chromatin state-based regulation of human monocyte-derived dendritic cells in different environments. Genes Immun. 13(4) , 311–320 (2012).
  • Fang TC , SchaeferU, MecklenbraukerI et al. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J. Exp. Med. 209(4) , 661–669 (2012).
  • Zhu Y , Van Essen D, Saccani S. Cell-type-specific control of enhancer activity by H3K9 trimethylation. Mol. Cell46(4) , 408–423 (2012).
  • Deaton AM , WebbS, KerrAR et al. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 21(7) , 1074–1086 (2011).
  • Illingworth RS , Gruenewald-SchneiderU, WebbS et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 6(9) , pii: e1001134 (2010).
  • Frikeche J , ClavertA, DelaunayJ et al. Impact of the hypomethylating agent 5-azacytidine on dendritic cells function. Exp. Hematol. 39(11) , 1056–1063 (2011).
  • Fedulov AV , KobzikL. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am. J. Respir. Cell Mol. Biol.44(3) , 285–292 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.