189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of the DNA Methylome and its Interindividual Variation in Human Peripheral Blood Monocytes

, , , &
Pages 255-269 | Published online: 11 Jun 2013

References

  • van der Maarel SM . Epigenetic mechanisms in health and disease. Ann. Rheum. Dis.67(Suppl. 3) , iii97–iii100 (2008).
  • Feinberg AP . Epigenetics at the epicenter of modern medicine. JAMA299(11) , 1345–1350 (2008).
  • Suzuki MM , BirdA. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet.9(6) , 465–476 (2008).
  • Ball MP , LiJB, GaoY et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27(4) , 361–368 (2009).
  • Maunakea AK , NagarajanRP, BilenkyM et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303) , 253–257 (2010).
  • Feinberg AP . Phenotypic plasticity and the epigenetics of human disease. Nature447(7143) , 433–440 (2007).
  • Ozanne SE , ConstanciaM. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat. Clin. Pract. Endocrinol. Metab.3(7) , 539–546 (2007).
  • Jiang YH , BresslerJ, BeaudetAL. Epigenetics and human disease. Ann. Rev. Genomics Hum. Genet.5 , 479–510 (2004).
  • Bjornsson HT , CuiH, GiusD, FallinMD, FeinbergAP. The new field of epigenomics: implications for cancer and other common disease research. Cold Spring Harb. Symp. Quant. Biol.69 , 447–456 (2004).
  • Migliore L , CoppedeF. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res.667(1-2) , 82–97 (2008).
  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358(11) , 1148–1159 (2008).
  • Johannes F , ColotV, JansenRC. Epigenome dynamics: a quantitative genetics perspective. Nat. Rev. Genet.9(11) , 883–890 (2008).
  • Reinius LE , AcevedoN, JoerinkM et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE 7(7) , e41361 (2012).
  • Koestler DC , MarsitCJ, ChristensenBC et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol. Biomarkers Prev. 21(8) , 1293–1302 (2012).
  • Jaenisch R , BirdA. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet.33(Suppl.) , 245–254 (2003).
  • Jirtle RL , SkinnerMK. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet.8(4) , 253–262 (2007).
  • Fraser HB , LamLL, NeumannSM, KoborMS. Population-specificity of human DNA methylation. Genome Biol.13(2) , R8 (2012).
  • Lam LL , EmberlyE, FraserHB et al. Factors underlying variable DNA methylation in a human community cohort. Proc. Natl Acad. Sci. USA 109(Suppl. 2) , 17253–17260 (2012).
  • Liu YZ , DvornykV, LuY et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J. Biol. Chem. 280(32) , 29011–29016 (2005).
  • Laso FJ , VaqueroJM, AlmeidaJ, MarcosM, OrfaoA. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin. Cytom.72(5) , 408–415 (2007).
  • Longhi MS , MitryRR, SamynM et al. Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory t-cells. Hepatology 50(1) , 130–142 (2009).
  • Dorffel Y , LatschC, StuhlmullerB et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34(1) , 113–117 (1999).
  • Deng FY , LeiSF, ZhangY et al. Peripheral blood monocyte-expressed ANXA2 gene is involved in pathogenesis of osteoporosis in humans. Mol. Cell. Proteomics 10(11) , M111.011700 (2011).
  • Deng FY , LiuYZ, LiLM et al. Proteomic analysis of circulating monocytes in chinese premenopausal females with extremely discordant bone mineral density. Proteomics 8(20) , 4259–4272 (2008).
  • Lei SF , WuS, LiLM et al. An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass. Bone 44(5) , 1010–1014 (2009).
  • Down TA , RakyanVK, TurnerDJ et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26(7) , 779–785 (2008).
  • Chavez L , JozefczukJ, GrimmC et al. Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem cells along the endodermal lineage. Genome Res. 20(10) , 1441–1450 (2010).
  • Weber M , DaviesJJ, WittigD et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37(8) , 853–862 (2005).
  • Pruitt KD , TatusovaT, BrownGR et al.NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res.40 , D130–D135 (2012).
  • Mikkelsen TS , KuM, JaffeDB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153) , 553–560 (2007).
  • Illingworth RS , BirdAP. Cpg islands – ‘a rough guide‘. FEBS Lett.583(11) , 1713–1720 (2009).
  • Kent WJ , SugnetCW, FureyTS et al. The human genome browser at UCSC. Genome Res. 12(6) , 996–1006 (2002).
  • Zheng Q , WangXJ. GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res.36(Web Server Issue) , W358–W363 (2008).
  • Benjamini Y , YekutieliD. The control of the false discovery rate in multiple hypothesis testing under dependency. Ann. Statistics29 , 1165–1188 (2001).
  • Carvalho B , IrizarryRA, SpeedTP et al. Exploration, normalization, and genotype calls of high density oligonucleotide SNP array data. Biostatistics 8(2) , 485–499 (2007).
  • Rauch TA , WuX, ZhongX, RiggsAD, PfeiferGP. A human B cell methylome at 100-base pair resolution. Proc. Natl Acad. Sci. USA106(3) , 671–678 (2009).
  • Li Y , ZhuJ, TianG et al. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 8(11) , e1000533 (2010).
  • Meissner A , MikkelsenTS, GuH et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205) , 766–770 (2008).
  • Bird AP . CpG-rich islands and the function of DNA methylation. Nature321(6067) , 209–213 (1986).
  • Shen L , KondoY, GuoY et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 3(10) , e181 (2007).
  • Illingworth R , KerrA, DesousaD et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6(1) , e22 (2008).
  • Rakyan VK , DownTA, ThorneNP et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 18(9) , 1518–1529 (2008).
  • Saxonov S , BergP, BrutlagDL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA103(5) , 1412–1417 (2006).
  • Weber M , HellmannI, StadlerMB et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39(4) , 457–466 (2007).
  • Zhang Y , RohdeC, TierlingS et al. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS Genet. 5(3) , e1000438 (2009).
  • Laurent L , WongE, LiG et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20(3) , 320–331 (2010).
  • Rakyan VK , HildmannT, NovikKL et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2(12) , e405 (2004).
  • Bell JT , PaiAA, PickrellJK et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 12(1) , R10 (2011).
  • Flanagan JM , PopendikyteV, PozdniakovaiteN et al. Intra- and interindividual epigenetic variation in human germ cells. Am. J. Hum. Genet. 79(1) , 67–84 (2006).
  • Bock C , WalterJ, PaulsenM, LengauerT. Interindividual variation of DNA methylation and its implications for large-scale epigenome mapping. Nucleic Acids Res.36(10) , e55 (2008).
  • Byun HM , SiegmundKD, PanF et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet. 18(24) , 4808–4817 (2009).
  • Feinberg AP , IrizarryRA, FradinD et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci. Transl. Med. 2(49) , 49ra67 (2010).
  • Gervin K , VigelandMD, MattingsdalM et al. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet. 8(1) , e1002454 (2012).
  • Movassagh M , ChoyMK, GoddardM, BennettMR, DownTA, FooRS. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE5(1) , e8564 (2010).
  • Gertz J , VarleyKE, ReddyTE et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet. 7(8) , e1002228 (2011).
  • Quon G , LippertC, HeckermanD, ListgartenJ. Patterns of methylation heritability in a genome-wide analysis of four brain regions. Nucleic Acids Res.41(4) , 2095–2104 (2013).
  • Gomes MV , ToffoliLV, ArrudaDW et al. Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to functional capacities. PLoS ONE 7(12) , e52570 (2012).
  • Talikka M , SierroN, IvanovNV et al. Genomic impact of cigarette smoke, with application to three smoking-related diseases. Crit. Rev. Toxicol. 42(10) , 877–889 (2012).
  • Sandovici I , Kassovska-BratinovaS, Loredo-OstiJC et al. Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum. Mol. Genet. 14(15) , 2135–2143 (2005).
  • Gogvadze E , BuzdinA. Retroelements and their impact on genome evolution and functioning. Cell. Mol. Life Sci.66(23) , 3727–3742 (2009).
  • Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science303(5664) , 1626–1632 (2004).
  • Xing J , ZhangY, HanK et al. Mobile elements create structural variation: analysis of a complete human genome. Genome Res. 19(9) , 1516–1526 (2009).
  • Huang CR , SchneiderAM, LuY et al. Mobile interspersed repeats are major structural variants in the human genome. Cell 141(7) , 1171–1182 (2010).
  • Treangen TJ , SalzbergSL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet.13(1) , 36–46 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.