270
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Association Between Birth Weight and DNA Methylation of IGF2, Glucocorticoid Receptor and Repetitive Elements LINE-1 and Alu

, , , , , , , , & show all
Pages 271-281 | Published online: 11 Jun 2013

References

  • Brodsky D , ChristouH. Current concepts in intrauterine growth restriction. J. Intensive Care Med.19(6) , 307–319 (2004).
  • Ross MG , BeallMH. Adult sequelae of intrauterine growth restriction. Semin. Perinatol.32(3) , 213–218 (2008).
  • Gluckman PD , HansonMA, CooperC, ThornburgKL. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med.359(1) , 61–73 (2008).
  • Gillman MW . Developmental origins of health and disease. N. Engl. J. Med.353(17) , 1848–1850 (2005).
  • Horike S , FerreiraJC, Meguro-HorikeM et al. Screening of DNA methylation at the H19 promoter or the distal region of its ICR1 ensures efficient detection of chromosome 11p15 epimutations in Russell–Silver syndrome. Am. J. Med. Genet. A 149A(11) , 2415–2423 (2009).
  • Netchine I , RossignolS, DufourgMN et al. 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell–Silver syndrome: clinical scoring system and epigenetic–phenotypic correlations. J. Clin. Endocrinol. Metab. 92(8) , 3148–3154 (2007).
  • Gaston V , Le Bouc Y, Soupre V et al. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet.9(6) , 409–418 (2001).
  • St-Pierre J , HivertMF, PerronP et al. IGF2 DNA methylation is a modulator of newborn‘s fetal growth and development. Epigenetics7(10) , 1125–1132 (2012).
  • Hoyo C , FortnerK, MurthaAP et al. Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight. Cancer Causes Control 23(4) , 635–645 (2012).
  • Mericq V , MedinaP, KakariekaE, MarquezL, JohnsonMC, IniguezG. Differences in expression and activity of 11beta-hydroxysteroid dehydrogenase type 1 and 2 in human placentas of term pregnancies according to birth weight and gender. Eur. J. Endocrinol.161(3) , 419–425 (2009).
  • Reinisch JM , SimonNG, KarowWG, GandelmanR. Prenatal exposure to prednisone in humans and animals retards intrauterine growth. Science202(4366) , 436–438 (1978).
  • French NP , HaganR, EvansSF, GodfreyM, NewnhamJP. Repeated antenatal corticosteroids: size at birth and subsequent development. Am. J. Obstet. Gynecol.180(1 Pt 1) , 114–121 (1999).
  • Bloom SL , SheffieldJS, McIntireDD, LevenoKJ. Antenatal dexamethasone and decreased birth weight. Obstet. Gynecol.97(4) , 485–490 (2001).
  • Diego MA , FieldT, Hernandez-ReifM, SchanbergS, KuhnC, Gonzalez-QuinteroVH. Prenatal depression restricts fetal growth. Early Hum. Dev.85(1) , 65–70 (2009).
  • Weaver IC , CervoniN, ChampagneFA et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7(8) , 847–854 (2004).
  • Oberlander TF , WeinbergJ, PapsdorfM, GrunauR, MisriS, DevlinAM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics3(2) , 97–106 (2008).
  • Yang AS , EstecioMR, DoshiK, KondoY, TajaraEH, IssaJP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res.32(3) , e38 (2004).
  • Weisenberger DJ , CampanM, LongTI et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 33(21) , 6823–6836 (2005).
  • Wright RO , SchwartzJ, WrightRJ et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ. Health Perspect. 118(6) , 790–795 (2010).
  • Baccarelli A , TarantiniL, WrightRO et al. Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics 5(3) , 222–228 (2010).
  • Kim M , LongTI, ArakawaK, WangR, YuMC, LairdPW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS ONE5(3) , e9692 (2010).
  • Pilsner JR , HuH, EttingerA et al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ. Health Perspect. 117(9) , 1466–1471 (2009).
  • Baccarelli A , WrightRO, BollatiV et al. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 179(7) , 572–578 (2009).
  • Amarilyo G , OrenA, MimouniFB, OchshornY, DeutschV, MandelD. Increased cord serum inflammatory markers in small-for-gestational-age neonates. J. Perinatol.31(1) , 30–32 (2011).
  • Odegard RA , VattenLJ, NilsenST, SalvesenKA, AustgulenR. Preeclampsia and fetal growth. Obstet. Gynecol.96(6) , 950–955 (2000).
  • Andrews KW , SavitzDA, Hertz-PicciottoI. Prenatal lead exposure in relation to gestational age and birth weight: a review of epidemiologic studies. Am. J. Ind. Med.26(1) , 13–32 (1994).
  • Wilhelm M , GhoshJK, SuJ, CockburnM, JerrettM, RitzB. Traffic-related air toxics and term low birth weight in Los Angeles County, California. Environ. Health Perspect.120(1) , 132–138 (2012).
  • Wilhelm-Benartzi CS , HousemanEA, MaccaniMA et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ. Health Perspect.120(2) , 296–302 (2011).
  • Michels KB , HarrisHR, BaraultL. Birth weight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS ONE6(9) , e25254 (2011).
  • Byun HM , WongHL, BirnsteinEA, WolffEM, LiangG, YangAS. Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res.67(22) , 10753–10758 (2007).
  • Zhang H , NiuB, HuJF et al. Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II. J. Cell Biol. 193(3) , 475–487 (2011).
  • Irizarry RA , Ladd-AcostaC, CarvalhoB et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. 18(5) , 780–790 (2008).
  • Bollati V , BaccarelliA, HouL et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 67(3) , 876–880 (2007).
  • Rios JM , Tufino-OlivaresE, Reza-LopezS, SaninLH, Levario-CarrilloM. Birth weight percentiles by gestational age and gender for children in the North of Mexico. Paediatr. Perinat. Epidemiol.22(2) , 188–194 (2008).
  • Gicquel C , RossignolS, CabrolS et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver–Russell syndrome. Nat. Genet. 37(9) , 1003–1007 (2005).
  • Angiolini E , FowdenA, CoanP et al. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27(Suppl. A) , S98–S102 (2006).
  • Fowden AL , SibleyC, ReikW, ConstanciaM. Imprinted genes, placental development and fetal growth. Horm Res65(Suppl. 3) , 50–58 (2006).
  • Tabano S , ColapietroP, CetinI et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics 5(4) , 313–324 (2010).
  • Guo L , ChoufaniS, FerreiraJ et al. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev. Biol. 320(1) , 79–91 (2008).
  • Tobi EW , HeijmansBT, KremerD et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 6(2) , 171–176 (2011).
  • Heijmans BT , TobiEW, SteinAD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105(44) , 17046–17049 (2008).
  • Cui H , OnyangoP, BrandenburgS, WuY, HsiehCL, FeinbergAP. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res.62(22) , 6442–6446 (2002).
  • Yoshimizu T , MiroglioA, RipocheMA et al. The H19 locus acts in vivo as a tumor suppressor. Proc. Natl Acad. Sci. USA 105(34) , 12417–12422 (2008).
  • Szabo PE , TangSH, SilvaFJ, TsarkWM, MannJR. Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol. Cell Biol.24(11) , 4791–4800 (2004).
  • Price SM , StanhopeR, GarrettC, PreeceMA, TrembathRC. The spectrum of Silver–Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria. J. Med. Genet.36(11) , 837–842 (1999).
  • Murrell A , HeesonS, ReikW. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet.36(8) , 889–893 (2004).
  • Coolen MW , StathamAL, QuW et al. Impact of the genome on the epigenome is manifested in DNA methylation patterns of imprinted regions in monozygotic and dizygotic twins. PLoS ONE 6(10) , e25590 (2011).
  • Egger G , LiangG, AparicioA, JonesPA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990) , 457–463 (2004).
  • Salam MT , ByunHM, LurmannF et al. Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J. Allergy Clin. Immunol. 129(1) , 232–239.e1–7 (2011).
  • Ronneberg JA , TostJ, SolvangHK et al. GSTP1 promoter haplotypes affect DNA methylation levels and promoter activity in breast carcinomas. Cancer Res.68(14) , 5562–5571 (2008).
  • Adkins RM , SomesG, MorrisonJC et al. Association of birth weight with polymorphisms in the IGF2, H19, and IGF2R genes. Pediatr. Res. 68(5) , 429–434 (2010).
  • Ursini G , BollatiV, FazioL et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J. Neurosci. 31(18) , 6692–6698 (2011).
  • Filiberto AC , MaccaniMA, KoestlerD et al. Birth weight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics 6(5) , 566–572 (2011).
  • Weaver JR , SusiarjoM, BartolomeiMS. Imprinting and epigenetic changes in the early embryo. Mamm. Genome20(9–10) , 532–543 (2009).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.