346
Views
0
CrossRef citations to date
0
Altmetric
Review

Combining Genomic and Proteomic Approaches for Epigenetics Research

&
Pages 439-452 | Published online: 29 Jul 2013

References

  • Esteller M . Epigenetics in cancer. N. Engl. J. Med.358 , 1148–1159 (2008).
  • Berger SL , KouzaridesT, ShiekhattarR, ShilatifardA. An operational definition of epigenetics. Gene Dev.23 , 781–783 (2009).
  • Suzuki MM , BirdA. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet.9 , 465–476 (2008).
  • Goldberg AD , AllisCD, BernsteinE. Epigenetics: a landscape takes shape. Cell128 , 635 (2007).
  • Nakao M . Epigenetics: interaction of DNA methylation and chromatin. Gene278 , 25–31 (2001).
  • Sajan SA , HawkinsRD. Methods for identification of higher-order chromatin structure. Annu. Rev. Genomics Hum. Genet.13 , 59–82 (2012).
  • Kornberg RD . Chromatin structure: a repeating unit of histones and DNA. Science184 , 868 (1974).
  • Grunstein M . Histone acetylation in chromatin structure and transcription. Nature389 , 349–352 (1997).
  • Weinhold B . Epigenetics: the science of change. Environ. Health Persp.114 , A160 (2006).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13 , 484–492 (2012).
  • Bird AP , WolffeAP. Methylation-induced repression – belts, braces, and chromatin. Cell99 , 451–454 (1999).
  • Dodge JE , OkanoM, DickF et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J. Biol. Chem. 280 , 17986–17991 (2005).
  • Hammoud SS , CairnsBR, CarrellDT. Analysis of gene-specific and genome-wide sperm DNA methylation. Methods Mol. Biol.927 , 451–458 (2013).
  • Surani MA . Imprinting and the initiation of gene silencing in the germ line. Cell93 , 309–312 (1998).
  • Ng HH , AdrianB. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev.9 , 158–163 (1999).
  • Weber M , DaviesJJ, WittigD et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37 , 853–862 (2005).
  • Chen Z , WangL, WangQ, LiW. Histone modifications and chromatin organization in prostate cancer. Epigenomics2 , 551–560 (2010).
  • Strahl BD , AllisCD. The language of covalent histone modifications. Nature403 , 41–45 (2000).
  • Ruthenburg AJ , LiH, PatelDJ, AllisCD. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol.8 , 983–994 (2007).
  • Tan M , LuoH, LeeS et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146 , 1016–1028 (2011).
  • Jenuwein T , AllisCD. Translating the histone code. Science293 , 1074–1080 (2001).
  • Turner BM . Cellular memory and the histone code. Cell111 , 285–291 (2002).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21 , 381–395 (2011).
  • Cedar H , BergmanY. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet.10 , 295–304 (2009).
  • Bird A . DNA methylation patterns and epigenetic memory. Gene Dev.16 , 6–21 (2002).
  • Fuks F . DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev.15 , 490–495 (2005).
  • Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8 , 286–298 (2007).
  • Alelu-Paz R , AshourN, Gonzalez-CorpasA, RoperoS. DNA methylation, histone modifications, and signal transduction pathways: a close relationship in malignant gliomas pathophysiology. J. Signal. Trans.2012 , 956–958 (2012).
  • Harris RA , WangT, CoarfaC et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol. 28 , 1097–1105 (2010).
  • Bock C , TomazouEM, BrinkmanAB et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28 , 1106–1114 (2010).
  • Laird PW . Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet.11 , 191–203 (2010).
  • Zilberman D , HenikoffS. Genome-wide analysis of DNA methylation patterns. Development134 , 3959–3965 (2007).
  • Brunner AL , JohnsonDS, KimSW et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19 , 1044–1056 (2009).
  • Oda M , GlassJL, ThompsonRF et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 37 , 3829–3839 (2009).
  • Down TA , RakyanVK, TurnerDJ et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26 , 779–785 (2008).
  • Coverdale LE , MartinCC. Epigenomics – genome wide modifications of cytosine and new dimensions in our understanding of differentiation and disease. Curr. Genomics6 , 491–500 (2005).
  • Brinkman AB , SimmerF, MaK, KaanA, ZhuJ, StunnenbergHG. Whole-genome DNA methylation profiling using methylCap-seq. Methods52 , 232–236 (2010).
  • Serre D , LeeBH, TingAH. MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res.38 , 391–399 (2010).
  • Meissner A , MikkelsenTS, GuH et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454 , 766–770 (2008).
  • Eckhardt F , LewinJ, CorteseR et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38 , 1378–1385 (2006).
  • Laird PW . The power and the promise of DNA methylation markers. Nat. Rev. Cancer3 , 253–266 (2003).
  • Pomraning KR , SmithKM, FreitagM. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods47 , 142–150 (2009).
  • S⊘rensen AL , CollasP. Immunoprecipitation of methylated DNA. Methods Mol. Biol.567 , 249–262 (2009).
  • Maunakea AK , NagarajanRP, BilenkyM et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466 , 253–257 (2010).
  • Lister R , PelizzolaM, DowenRH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462 , 315–322 (2009).
  • Meissner A , GnirkeA, BellGW, RamsahoyeB, LanderES, JaenischR. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res.33 , 5868–5877 (2005).
  • Gu H , SmithZD, BockC, BoyleP, GnirkeA, MeissnerA. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc.6 , 468–481 (2011).
  • Cokus SJ , FengS, ZhangX et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452 , 215–219 (2008).
  • Kouzarides T . Chromatin modifications and their function. Cell128 , 693 (2007).
  • Li B , CareyM, WorkmanJL. The role of chromatin during transcription. Cell128 , 707–719 (2007).
  • Schones DE , ZhaoK. Genome-wide approaches to studying chromatin modifications. Nat. Rev. Genet.9 , 179–191 (2008).
  • Iyer VR , HorakCE, ScafeCS, BotsteinD, SnyderM, BrownPO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature409 , 533–538 (2001).
  • Ren B , RobertF, WyrickJJ et al. Genome-wide location and function of DNA binding proteins. Science 290 , 2306–2309 (2000).
  • Zhang Z , PughBF. High-resolution genome-wide mapping of the primary structure of chromatin. Cell144 , 175–186 (2011).
  • Zhou VW , GorenA, BernsteinBE. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet.12 , 7–18 (2011).
  • Wang Z , ZangC, RosenfeldJA et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40 , 897–903 (2008).
  • Vega VB , CheungE, PalanisamyN, SungWK. Inherent signals in sequencing-based chromatin-immunoprecipitation control libraries. PLoS One4 , e5241 (2009).
  • Roh T , ZhaoK. High-resolution, genome-wide mapping of chromatin modifications by GMAT. Methods Mol. Biol.387 , 95 (2008).
  • Ng P , TanJJ, OoiHS et al. Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res. 34 , e84–e84 (2006).
  • Buck MJ , LiebJD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics83 , 349–360 (2004).
  • Park PJ . ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.10 , 669–680 (2009).
  • Li KK , LuoC, WangD, JiangH, ZhengYG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med. Res. Rev.32 , 815–867 (2012).
  • Heintzman ND , StuartRK, HonG et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39 , 311–318 (2007).
  • Kirmizis A , BartleySM, KuzmichevA et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Gene Dev. 18 , 1592–1605 (2004).
  • Viré E , BrennerC, DeplusR et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 439 , 871–874 (2005).
  • Peters AH , SchübelerD. Methylation of histones: playing memory with DNA. Curr. Opin. Cell Biol.17 , 230–238 (2005).
  • Irvine RA , HsiehCL. Q-PCR in combination with ChIP assays to detect changes in chromatin acetylation. Methods Mol. Biol.287 , 45–52 (2004).
  • Barski A , CuddapahS, CuiK et al. High-resolution profiling of histone methylations in the human genome. Cell 129 , 823–837 (2007).
  • Garcia BA , PesaventoJJ, MizzenCA, KelleherNL. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods4 , 487–489 (2007).
  • Vermeulen M , EberlHC, MatareseF et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142 , 967–980 (2010).
  • Vasilescu J , FigeysD. Mapping protein–protein interactions by mass spectrometry. Curr. Opin. Biotech.17 , 394 (2006).
  • Ethier M , LambertJP, VasilescuJ, FigeysD. Analysis of protein interaction networks using mass spectrometry compatible techniques. Anal. Chim. Acta564 , 10–18 (2006).
  • Bauer A , KusterB. Affinity purification-mass spectrometry. Eur. J. Biochem.270 , 570–578 (2003).
  • Roque A , LoweC. Affinity chromatography: history, perspectives, limitations and prospects. Methods Mol. Biol.421 , 1–21 (2008).
  • Dunham WH , MullinM, GingrasAC. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics12 , 1576–1590 (2012).
  • Puig O , CasparyF, RigautG et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24 , 218–229 (2001).
  • Li Y . The tandem affinity purification technology: an overview. Biotechnol. Lett.33 , 1487–1499 (2011).
  • Trinkle-Mulcahy L . Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry. Proteomics12 , 1623–1638 (2012).
  • Galan JA , ParisLL, ZhangHJ, AdlerJ, GeahlenRL, TaoWA. Proteomic studies of Syk-interacting proteins using a novel amine-specific isotope tag and GFP nanotrap. J. Am. Soc. Mass Spectrom.22 , 319–328 (2011).
  • Oeffinger M . Two steps forward – one step back: advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics12 , 1591–1608 (2012).
  • Breitkreutz A , ChoiH, SharomJR et al. A global protein kinase and phosphatase interaction network in yeast. Science 328 , 1043–1046 (2010).
  • Poser I , SarovM, HutchinsJR et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat. Methods 5 , 409–415 (2008).
  • Tang X , BruceJE. Chemical crosslinking for protein–protein interaction studies. Methods Mol. Biol.492 , 283–293 (2009).
  • Sinz A . Chemical crosslinking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev.25 , 663–682 (2006).
  • Leitner A , WalzthoeniT, KahramanA et al. Probing native protein structures by chemical crosslinking, mass spectrometry, and bioinformatics. Mol. Cell Proteomics 9 , 1634–1649 (2010).
  • Byrum SD , TavernaSD, TackettAJ. Quantitative analysis of histone exchange for transcriptionally active chromatin. J. Clin. Bioinforma.1 , 17 (2011).
  • Byrum S , MackintoshSG, EdmondsonRD, CheungWL, TavernaSD, TackettAJ. Analysis of histone exchange during chromatin purification. J. Integr. OMICS1 , 61–65 (2011).
  • Northrup DL , ZhaoK. Application of ChIP-seq and related techniques to the study of immune function. Immunity34 , 830–842 (2011).
  • Das PM , RamachandranK, VanwertJ, SingalR. Chromatin immunoprecipitation assay. Biotechniques37 , 961–969 (2004).
  • O‘Neill LP , TurnerBM. Immunoprecipitation of native chromatin: NChIP. Methods31 , 76–82 (2003).
  • Krogan NJ , CagneyG, YuH et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440 , 637–643 (2006).
  • Stunnenberg HG , VermeulenM. Towards cracking the epigenetic code using a combination of high-throughput epigenomics and quantitative mass spectrometry-based proteomics. Bioessays33 , 547–551 (2011).
  • Dawson MA , KouzaridesT. Cancer epigenetics: from mechanism to therapy. Cell150 , 12–27 (2012).
  • Ueberheide BM , MollahS. Deciphering the histone code using mass spectrometry. Int. J. Mass Spectrom.259 , 46–56 (2007).
  • Bartke T , BorgelJ, DimaggioPA. Proteomics in epigenetics: new perspectives for cancer research. Brief Funct. Genomics12(3) , 205–218 (2013).
  • Young NL , DimaggioPA, GarciaBA. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol. Life Sci.67 , 3983–4000 (2010).
  • Yates JR , RuseCI, NakorchevskyA. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng.11 , 49–79 (2009).
  • Zee BM , GarciaBA. Validation of protein acetylation by mass spectrometry. Methods Mol. Biol.981 , 1–11 (2013).
  • Sidoli S , ChengL, JensenON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J. Proteomics75 , 3419–3433 (2012).
  • Lin S , GarciaBA. Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol.512 , 3–28 (2012).
  • Siuti N , KelleherNL. Decoding protein modifications using top-down mass spectrometry. Nat. Methods4 , 817–821 (2007).
  • Macek B , WaandersLF, OlsenJV, MannM. Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol. Cell Proteomics5 , 949–958 (2006).
  • Pesavento JJ , KimYB, TaylorGK, KelleherNL. Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J. Am. Chem. Soc.126 , 3386–3387 (2004).
  • Thomas CE , KelleherNL, MizzenCA. Mass spectrometric characterization of human histone H3: a bird‘s eye view. J. Proteome Res.5 , 240–247 (2006).
  • Young NL , DimaggioPA, Plazas-MayorcaMD, BalibanRC, FloudasCA, GarciaBA. High throughput characterization of combinatorial histone codes. Mol. Cell Proteomics8 , 2266–2284 (2009).
  • Boyne MT 2nd, Pesavento JJ, Mizzen CA, Kelleher NL. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J. Proteome Res.5 , 248–253 (2006).
  • Soldi M , BonaldiT. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol. Cell Proteomics12 , 764–780 (2013).
  • Pokholok DK , HarbisonCT, LevineS et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122 , 517–527 (2005).
  • Nelson EA , WalkerSR, AlvarezJV, FrankDA. Isolation of unique STAT5 targets by chromatin immunoprecipitation-based gene identification. J. Biol. Chem.279 , 54724–54730 (2004).
  • Voigt P , LeroyG, DruryWJ 3rd et al. Asymmetrically modified nucleosomes. Cell151 , 181–193 (2012).
  • Vinckevicius A , ChakravartiD. Chromatin immunoprecipitation: advancing analysis of nuclear hormone signaling. J. Mol. Endocrinol.49 , R113–R123 (2012).
  • Nelson JD , DenisenkoO, BomsztykK. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc.1 , 179–185 (2006).
  • Collas P , DahlJA. Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci.13 , 929–943 (2008).
  • Collas P . The current state of chromatin immunoprecipitation. Mol. Biotechnol.45 , 87–100 (2010).
  • Garcia BA , ShabanowitzJ, HuntDF. Characterization of histones and their post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol.11(1) , 66–73 (2007).
  • Beck HC . Mass spectrometry in epigenetic research. Methods Mol. Biol.593 , 263–282 (2010).
  • Hardison RC , TaylorJ. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet.13 , 469–483 (2012).
  • Leroy G , ChepelevI, DimaggioPA et al. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biol. 13 , R68 (2012).
  • Wang CI , AlekseyenkoAA, LeroyG et al. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat. Struct. Mol. Biol. 20 , 202–209 (2013).
  • Price CM , CechTR. Telomeric DNA–protein interactions of oxytricha macronuclear DNA. Gene Dev.1 , 783–793 (1987).
  • Lambert JP , MitchellL, RudnerA, BaetzK, FigeysD. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol. Cell Proteomics8 , 870–882 (2009).
  • Wood A , SchneiderJ, DoverJ, JohnstonM, ShilatifardA. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol. Cell20 , 589–599 (2005).
  • Chu DS , LiuH, NixP et al. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443 , 101–105 (2006).
  • Griesenbeck J , BoegerH, StrattanJS, KornbergRD. Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol. Cell Biol.23 , 9275–9282 (2003).
  • Rusk N . Reverse ChIP. Nat. Methods6 , 187–187 (2009).
  • Byrum SD , RamanA, TavernaSD, TackettAJ. ChAP–MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Reports2(1) , 198–205 (2012).
  • Déjardin J , KingstonRE. Purification of proteins associated with specific genomic Loci. Cell136 , 175–186 (2009).
  • Wu CH , ChenS, ShortreedMR et al. Sequence-specific capture of protein–DNA complexes for mass spectrometric protein identification. PLoS One 6 , e26217 (2011).
  • Fujita T , FujiiH. Direct identification of insulator components by insertional chromatin immunoprecipitation. PLoS One6 , e26109 (2011).
  • Fujita T , FujiiH. Locus-specific biochemical epigenetics/chromatin biochemistry by insertional chromatin immunoprecipitation. ISRN Biochem.2013 , 913273 (2013).
  • Agelopoulos M , MckayDJ, MannRS. Developmental regulation of chromatin conformation by Hox proteins in Drosophila. Cell Rep.1 , 350–359 (2012).
  • Eberl HC , MannM, VermeulenM. Quantitative proteomics for epigenetics. Chembiochem12 , 224–234 (2011).
  • Cox J , MannM. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem.80 , 273–299 (2011).
  • Vermeulen M , MulderKW, DenissovS et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131 , 58–69 (2007).
  • Katan-Khaykovich Y , StruhlK. Splitting of H3–H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA108 , 1296–1301 (2011).
  • Greer EL , ShiY. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet.13 , 343–357 (2012).
  • Bartke T , VermeulenM, XhemalceB, RobsonSC, MannM, KouzaridesT. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell143 , 470–484 (2010).
  • Li X , FoleyEA, MolloyKR, LiY, ChaitBT, KapoorTM. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein–protein interactions. J. Am. Chem. Soc.134 , 1982–1985 (2012).
  • Bogdanovic O , VeenstraGJ. Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos. BMC Res. Notes4 , 300 (2011).
  • Mittler G , ButterF, MannM. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res.19 , 284–293 (2009).
  • Spruijt CG , GnerlichF, SmitsAH et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152 , 1146–1159 (2013).
  • O‘Neill LP , VermilyeaMD, TurnerBM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet.38 , 835–841 (2006).
  • Dahl JA , CollasP. Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells25 , 1037–1046 (2007).
  • Dahl JA , CollasP. MicroChIP – a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res.36 , e15 (2008).
  • Dahl JA , CollasP. A rapid micro chromatin immunoprecipitation assay (microChIP). Nat. Protoc.3 , 1032–1045 (2008).
  • Flanagin S , NelsonJD, CastnerDG, DenisenkoO, BomsztykK. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res.36 , e17 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.