2,874
Views
0
CrossRef citations to date
0
Altmetric
Review

Combating the Epigenome: Epigenetic Drugs Against Non-Hodgkin‘S Lymphoma

, &
Pages 397-415 | Published online: 29 Jul 2013

References

  • Morton LM , WangSS, DevesaSS, HartgeP, WeisenburgerDD, LinetMS. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood107(1) , 265–276 (2006).
  • Harris NL , JaffeES, SteinH et al. A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84(5) , 1361–1392 (1994).
  • Swerdlow S , CampoE, HarrisN, AlE. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues (4th Edition). International Agency for Research on Cancer Press, Lyon, France, 214–217 (2008).
  • Martin-Subero JI , Lopez-OtinC, CampoE. Genetic and epigenetic basis of chronic lymphocytic leukemia. Curr. Opin. Hematol.20(4) , 362–368 (2013).
  • Piccaluga PP , AgostinelliC, CalifanoA et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 67(22) , 10703–10710 (2007).
  • Streubel B , VinatzerU, WillheimM, RadererM, ChottA. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia20(2) , 313–318 (2006).
  • Kohno T , YamadaY, AkamatsuN et al. Possible origin of adult T-cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T cells. Cancer Sci. 96(8) , 527–533 (2005).
  • Beral V , PetermanT, BerkelmanR, JaffeH. AIDS-associated non-Hodgkin lymphoma. Lancet337(8745) , 805–809 (1991).
  • Canioni D , JabadoN, MacintyreE, PateyN, EmileJF, BrousseN. Lymphoproliferative disorders in children with primary immunodeficiencies: immunological status may be more predictive of the outcome than other criteria. Histopathology38(2) , 146–159 (2001).
  • Kassan SS , ThomasTL, MoutsopoulosHM et al. Increased risk of lymphoma in sicca syndrome. Ann. Intern. Med. 89(6) , 888–892 (1978).
  • Hamilton-Dutoit SJ , ReaD, RaphaelM et al. Epstein–Barr virus-latent gene expression and tumor cell phenotype in acquired immunodeficiency syndrome-related non-Hodgkin‘s lymphoma. Correlation of lymphoma phenotype with three distinct patterns of viral latency. Am. J. Pathol. 143(4) , 1072–1085 (1993).
  • Du MQ , BaconCM, IsaacsonPG. Kaposi sarcoma-associated herpesvirus/human herpesvirus 8 and lymphoproliferative disorders. J. Clin. Pathol.60(12) , 1350–1357 (2007).
  • Satou Y , YasunagaJ, YoshidaM, MatsuokaM. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc. Natl Acad. Sci. USA103(3) , 720–725 (2006).
  • Marcucci F , MeleA. Hepatitis viruses and non-Hodgkin lymphoma: epidemiology, mechanisms of tumorigenesis, and therapeutic opportunities. Blood117(6) , 1792–1798 (2011).
  • Guidoboni M , FerreriAJ, PonzoniM, DoglioniC, DolcettiR. Infectious agents in mucosa-associated lymphoid tissue-type lymphomas: pathogenic role and therapeutic perspectives. Clin. Lymphoma Myeloma6(4) , 289–300 (2006).
  • Carbone PP , KaplanHS, MusshoffK, SmithersDW, TubianaM. Report of the Committee on Hodgkin‘s Disease Staging Classification. Cancer Res.31(11) , 1860–1861 (1971).
  • Project TIN -HSLPF. A predictive model for aggressive non-Hodgkin‘s lymphoma. The International Non-Hodgkin‘s Lymphoma Prognostic Factors Project. N .Engl. J. Med.329(14) , 987–994 (1993).
  • Siebert R , RosenwaldA, StaudtLM, MorrisSW. Molecular features of B-cell lymphoma. Curr. Opin. Oncol.13(5) , 316–324 (2001).
  • Jares P , CampoE, PinyolM et al. Expression of retinoblastoma gene product (pRb) in mantle cell lymphomas. Correlation with cyclin D1 (PRAD1/CCND1) mRNA levels and proliferative activity. Am. J. Pathol. 148(5) , 1591–1600 (1996).
  • Quintanilla-Martinez L , Davies-HillT, FendF et al. Sequestration of p27Kip1 protein by cyclin D1 in typical and blastic variants of mantle cell lymphoma (MCL): implications for pathogenesis. Blood 101(8) , 3181–3187 (2003).
  • Carvajal-Cuenca A , SuaLF, SilvaNM et al. In situ mantle cell lymphoma: clinical implications of an incidental finding with indolent clinical behavior. Haematologica97(2) , 270–278 (2012).
  • Jegalian AG , EberleFC, PackSD et al. Follicular lymphoma in situ: clinical implications and comparisons with partial involvement by follicular lymphoma. Blood 118(11) , 2976–2984 (2011).
  • Zhang Q , SiebertR, YanM et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat. Genet. 22(1) , 63–68 (1999).
  • Zech L , HaglundU, NilssonK, KleinG. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int. J. Cancer17(1) , 47–56 (1976).
  • Alizadeh AA , EisenMB, DavisRE et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769) , 503–511 (2000).
  • Huang Y , De Reyniès A, De Leval L et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood115(6) , 1226–1237 (2010).
  • Piccaluga PP , AgostinelliC, CalifanoA et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J. Clin. Invest. 117(3) , 823–834 (2007).
  • Bellan C , LazziS, De Falco G, Nyongo A, Giordano A, Leoncini L. Burkitt‘s lymphoma: new insights into molecular pathogenesis. J. Clin. Pathol.56(3) , 188–192 (2003).
  • Hagelkruys A , SawickaA, RennmayrM, SeiserC. The biology of HDAC in cancer: the nuclear and epigenetic components. Handb. Exp. Pharmacol.206 , 13–37 (2011).
  • Marquard L , PoulsenCB, GjerdrumLM et al. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology 54(6) , 688–698 (2009).
  • Marquard L , GjerdrumLM, ChristensenIJ, JensenPB, SehestedM, RalfkiaerE. Prognostic significance of the therapeutic targets histone deacetylase 1, 2, 6 and acetylated histone H4 in cutaneous T-cell lymphoma. Histopathology53(3) , 267–277 (2008).
  • Minucci S , PelicciPG. Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin. Cell Dev. Biol.10(2) , 215–225 (1999).
  • Pasqualucci L , BereschenkoO, NiuH et al. Molecular pathogenesis of non-Hodgkin‘s lymphoma: the role of Bcl-6. Leuk. Lymphoma 44(Suppl. 3) , S5–S12 (2003).
  • Zhang X , ChenX, LinJ et al. Myc represses miR-15a/miR-16–11 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 31(24) , 3002–3008 (2012).
  • Zhang X , ZhaoX, FiskusW et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell 22(4) , 506–523 (2012).
  • Gupta M , HanJJ, StensonM, WellikL, WitzigTE. Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy. Leukemia26(6) , 1356–1364 (2012).
  • Bracken AP , HelinK. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer9(11) , 773–784 (2009).
  • Velichutina I , ShaknovichR, GengH et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116(24) , 5247–5255 (2010).
  • van Galen JC , DukersDF, GirothC et al. Distinct expression patterns of polycomb oncoproteins and their binding partners during the germinal center reaction. Eur. J. Immunol. 34(7) , 1870–1881 (2004).
  • Morin RD , JohnsonNA, SeversonTM et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42(2) , 181–185 (2010).
  • Love C , SunZ, JimaD et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 44(12) , 1321–1325 (2012).
  • Nikoloski G , LangemeijerSM, KuiperRP et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42(8) , 665–667 (2010).
  • Visser HP , GunsterMJ, Kluin-NelemansHC et al. The polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br. J. Haematol. 112(4) , 950–958 (2001).
  • Eckerle S , BruneV, DöringC et al. Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia 23(11) , 2129–2138 (2009).
  • Sasaki D , ImaizumiY, HasegawaH et al. Overexpression of Enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica 96(5) , 712–719 (2011).
  • Majer CR , JinL, ScottMP et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett. 586(19) , 3448–3451 (2012).
  • McCabe MT , GravesAP, GanjiG et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl Acad. Sci. USA 109(8) , 2989–2994 (2012).
  • Yap DB , ChuJ, BergT et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117(8) , 2451–2459 (2011).
  • Agger K , CloosPA, ChristensenJ et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163) , 731–734 (2007).
  • Lan F , BaylissPE, RinnJL et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163) , 689–694 (2007).
  • Lee MG , VillaR, TrojerP et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849) , 447–450 (2007).
  • McCabe MT , OttHM, GanjiG et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427) , 108–112 (2012).
  • van Haaften G , DalglieshGL, DaviesH et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41(5) , 521–523 (2009).
  • Morin RD , Mendez-LagoM, MungallAJ et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360) , 298–303 (2011).
  • Pasqualucci L , TrifonovV, FabbriG et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43(9) , 830–837 (2011).
  • Lohr JG , StojanovP, LawrenceMS et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109(10) , 3879–3884 (2012).
  • Shilatifard A . Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem.75 , 243–269 (2006).
  • Issaeva I , ZonisY, RozovskaiaT et al. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cell. Biol. 27(5) , 1889–1903 (2007).
  • Yuan ZL , GuanYJ, ChatterjeeD, ChinYE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science307(5707) , 269–273 (2005).
  • Pasqualucci L , Dominguez-SolaD, ChiarenzaA et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471(7337) , 189–195 (2011).
  • Pasini D , MalatestaM, JungHR et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of polycomb group target genes. Nucleic Acids Res. 38(15) , 4958–4969 (2010).
  • Martín-Pérez D , SánchezE, MaestreL et al. Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. Am. J. Pathol. 177(2) , 930–942 (2010).
  • van Kemenade FJ , RaaphorstFM, BlokzijlT et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 97(12) , 3896–3901 (2001).
  • Martín-Subero JI , KreuzM, BibikovaM et al. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood 113(11) , 2488–2497 (2009).
  • Widschwendter M , FieglH, EgleD et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39(2) , 157–158 (2007).
  • Gal-Yam EN , EggerG, IniguezL et al. Frequent switching of polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl Acad. Sci. USA 105(35) , 12979–12984 (2008).
  • Ehrich M , TurnerJ, GibbsP et al. Cytosine methylation profiling of cancer cell lines. Proc. Natl Acad. Sci. USA 105(12) , 4844–4849 (2008).
  • Challen GA , SunD, JeongM et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44(1) , 23–31 (2011).
  • Couronné L , BastardC, BernardOA. TET2 and DNMT3A mutations in human T-cell lymphoma. N .Engl. J. Med.366(1) , 95–96 (2012).
  • Shah MY , VasanthakumarA, BarnesNY et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res. 70(14) , 5840–5850 (2010).
  • Vasanthakumar A , LeporeJB, ZegarekMH et al. Dnmt3b is a haploinsufficient tumor suppressor gene in Myc-induced lymphomagenesis. Blood121(11) , 2059–2063 (2013).
  • Amara K , ZiadiS, HachanaM, SoltaniN, KorbiS, TrimecheM. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci.101(7) , 1722–1730 (2010).
  • Bröske AM , VockentanzL, KharaziS et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41(11) , 1207–1215 (2009).
  • Trowbridge JJ , SnowJW, KimJ, OrkinSH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell5(4) , 442–449 (2009).
  • Trowbridge JJ , SinhaAU, ZhuN, LiM, ArmstrongSA, OrkinSH. Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev.26(4) , 344–349 (2012).
  • Egger G , LiangG, AparicioA, JonesPA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990) , 457–463 (2004).
  • Cheng JC , MatsenCB, GonzalesFA et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst. 95(5) , 399–409 (2003).
  • Santi DV , GarrettCE, BarrPJ. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell33(1) , 9–10 (1983).
  • Santi DV , NormentA, GarrettCE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc. Natl Acad. Sci. USA81(22) , 6993–6997 (1984).
  • Kantarjian HM , IssaJP. Decitabine dosing schedules. Semin. Hematol.42(3 Suppl. 2) , S17–S22 (2005).
  • Lee TT , KaronMR. Inhibition of protein synthesis in 5-azacytidine-treated HeLa cells. Biochem. Pharmacol.25(15) , 1737–1742 (1976).
  • Ogama Y , OuchidaM, YoshinoT et al. Prevalent hyper-methylation of the CDH13 gene promoter in malignant B cell lymphomas. Int. J. Oncol. 25(3) , 685–691 (2004).
  • Agrelo R , SetienF, EspadaJ et al. Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J. Clin. Oncol. 23(17) , 3940–3947 (2005).
  • Hassler MR , KlisaroskaA, KollmannK et al. Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2´-deoxycytidine in anaplastic large cell lymphoma. Biochimie 94(11) , 2297–2307 (2012).
  • Han Y , AminHM, FrantzC et al. Restoration of shp1 expression by 5-AZA-2´-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma. Leukemia 20(9) , 1602–1609 (2006).
  • Qin T , JelinekJ, SiJ, ShuJ, IssaJP. Mechanisms of resistance to 5-aza-2´-deoxycytidine in human cancer cell lines. Blood113(3) , 659–667 (2009).
  • Momparler RL . Pharmacology of 5-aza-2´-deoxycytidine (decitabine). Semin. Hematol.42(3 Suppl. 2) , S9–S16 (2005).
  • Samlowski WE , LeachmanSA, WadeM et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J. Clin. Oncol. 23(17) , 3897–3905 (2005).
  • Karahoca M , MomparlerRL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2´-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin. Epigenetics5(1) , 3 (2013).
  • Lavelle D , VaitkusK, LingY et al. Effects of tetrahydrouridine on pharmacokinetics and pharmacodynamics of oral decitabine. Blood 119(5) , 1240–1247 (2012).
  • Momparler RL , GoodmanJ. In vitro cytotoxic and biochemical effects of 5-aza-2´-deoxycytidine. Cancer Res.37(6) , 1636–1639 (1977).
  • Issa JP , Garcia-ManeroG, GilesFJ et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2´-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103(5) , 1635–1640 (2004).
  • Kaminskas E , FarrellA, AbrahamS et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin. Cancer Res. 11(10) , 3604–3608 (2005).
  • Blum KA , LiuZ, LucasDM et al. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br. J. Haematol. 150(2) , 189–195 (2010).
  • Stewart DJ , IssaJP, KurzrockR et al. Decitabine effect on tumor global DNA methylation and other parameters in a Phase I trial in refractory solid tumors and lymphomas. Clin. Cancer Res. 15(11) , 3881–3888 (2009).
  • Stathis A , HotteSJ, ChenEX et al. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin‘s lymphomas. Clin. Cancer Res. 17(6) , 1582–1590 (2011).
  • Cameron EE , BachmanKE, MyöhänenS, HermanJG, BaylinSB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21(1) , 103–107 (1999).
  • Minucci S , PelicciPG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer6(1) , 38–51 (2006).
  • Bradner JE , WestN, GrachanML et al. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol. 6(3) , 238–243 (2010).
  • Hu E , DulE, SungCM et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther. 307(2) , 720–728 (2003).
  • Vannini A , VolpariC, FilocamoG et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA 101(42) , 15064–15069 (2004).
  • Inoue S , MaiA, DyerMJ, CohenGM. Inhibition of histone deacetylase class I but not class II is critical for the sensitization of leukemic cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res.66(13) , 6785–6792 (2006).
  • Santo L , HideshimaT, KungAL et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119(11) , 2579–2589 (2012).
  • Fournel M , BonfilsC, HouY et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther. 7(4) , 759–768 (2008).
  • Lin RJ , EganDA, EvansRM. Molecular genetics of acute promyelocytic leukemia. Trends Genet.15(5) , 179–184 (1999).
  • He LZ , TolentinoT, GraysonP et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J. Clin. Invest. 108(9) , 1321–1330 (2001).
  • Kalac M , ScottoL, MarchiE et al. HDAC inhibitors and decitabine are highly synergistic and associated with unique gene-expression and epigenetic profiles in models of DLBCL. Blood 118(20) , 5506–5516 (2011).
  • Zhang C , RichonV, NiX, TalpurR, DuvicM. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J. Invest. Dermatol.125(5) , 1045–1052 (2005).
  • Piekarz RL , RobeyRW, ZhanZ et al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood 103(12) , 4636–4643 (2004).
  • Camphausen K , BurganW, CerraM et al. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res. 64(1) , 316–321 (2004).
  • Munshi A , KurlandJF, NishikawaT et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res. 11(13) , 4912–4922 (2005).
  • Richon VM , SandhoffTW, RifkindRA, MarksPA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl Acad. Sci. USA97(18) , 10014–10019 (2000).
  • Shao Y , GaoZ, MarksPA, JiangX. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA101(52) , 18030–18035 (2004).
  • Insinga A , MonestiroliS, RonzoniS et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med. 11(1) , 71–76 (2005).
  • Nebbioso A , ClarkeN, VoltzE et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med. 11(1) , 77–84 (2005).
  • Tang Y , ZhaoW, ChenY, ZhaoY, GuW. Acetylation is indispensable for p53 activation. Cell133(4) , 612–626 (2008).
  • Guan JS , HaggartySJ, GiacomettiE et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243) , 55–60 (2009).
  • Heideman MR , WiltingRH, YanoverE et al. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood 121(11) , 2038–2050 (2013).
  • Santoro F , BotrugnoOA, Dal Zuffo R et al. A dual role for HDAC1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood121(17) , 3459–3468 (2013).
  • Dovey OM , FosterCT, ConteN et al. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood 121(8) , 1335–1344 (2013).
  • Gloghini A , BuglioD, KhaskhelyNM et al. Expression of histone deacetylases in lymphoma: implication for the development of selective inhibitors. Br. J. Haematol. 147(4) , 515–525 (2009).
  • Balasubramanian S , RamosJ, LuoW, SirisawadM, VernerE, BuggyJJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia22(5) , 1026–1034 (2008).
  • Mann BS , JohnsonJR, CohenMH, JusticeR, PazdurR. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist12(10) , 1247–1252 (2007).
  • Younes A , WedgwoodA, McLaughlinP et al. Treatment of relapsed or refractory lymphoma with the oral isotype-selective histone deacetylase inhibitor MGCD0103: interim results from a Phase II study. Blood 110(11), Abstract 2571 (2007).
  • Gore L , RothenbergML, O‘BryantCL et al. A Phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas. Clin. Cancer Res. 14(14) , 4517–4525 (2008).
  • Piekarz RL , FryeR, TurnerM et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 27(32) , 5410–5417 (2009).
  • Ryan QC , HeadleeD, AcharyaM et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. 23(17) , 3912–3922 (2005).
  • Kelly WK , O‘ConnorOA, KrugLM et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 23(17) , 3923–3931 (2005).
  • Sandor V , BakkeS, RobeyRW et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. 8(3) , 718–728 (2002).
  • Garcia-Manero G , AssoulineS, CortesJ et al. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112(4) , 981–989 (2008).
  • Zain J . Role of histone deacetylase inhibitors in the treatment of lymphomas and multiple myeloma. Hematol. Oncol. Clin. North Am.26(3) , 671–704, ix (2012).
  • Bertino EM , OttersonGA. Romidepsin: a novel histone deacetylase inhibitor for cancer. Expert Opin. Investig. Drugs20(8) , 1151–1158 (2011).
  • Olsen EA , KimYH, KuzelTM et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25(21) , 3109–3115 (2007).
  • Duvic M , TalpurR, NiX et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109(1) , 31–39 (2007).
  • Kirschbaum M , FrankelP, PopplewellL et al. Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin‘s lymphoma and mantle cell lymphoma. J. Clin. Oncol. 29(9) , 1198–1203 (2011).
  • Crump M , CoiffierB, JacobsenED et al. Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma. Ann. Oncol. 19(5) , 964–969 (2008).
  • Whittaker SJ , DemierreMF, KimEJ et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28(29) , 4485–4491 (2010).
  • Coiffier B , ProB, PrinceHM et al. Results from a pivotal, open-label, Phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol. 30(6) , 631–636 (2012).
  • Piekarz RL , FryeR, PrinceHM et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117(22) , 5827–5834 (2011).
  • Duvic M , BeckerJ, DalleS et al. Phase II trial of oral panobinostat (LBH589) in patients with refractory cutaneous T-cell lymphoma (CTCL). Blood 112(11), Abstract 1005 (2008).
  • Tan J , YangX, ZhuangL et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21(9) , 1050–1063 (2007).
  • Miranda TB , CortezCC, YooCB et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8(6) , 1579–1588 (2009).
  • Fiskus W , RaoR, BalusuR et al. Superior efficacy of a combined epigenetic therapy against human mantle cell lymphoma cells. Clin. Cancer Res. 18(22) , 6227–6238 (2012).
  • Greiner D , BonaldiT, EskelandR, RoemerE, ImhofA. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol.1(3) , 143–145 (2005).
  • Zheng W , IbáñezG, WuH et al. Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J. Am. Chem. Soc. 134(43) , 18004–18014 (2012).
  • Williams DE , DalisayDS, LiF et al. Nahuoic acid A produced by a Streptomyces sp. isolated from a marine sediment is a selective SAM-competitive inhibitor of the histone methyltransferase SETD8. Org. Lett. 15(2) , 414–417 (2013).
  • Kubicek S , O‘sullivanRJ, AugustEM et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell. 25(3) , 473–481 (2007).
  • Knutson SK , WigleTJ, WarholicNM et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8(11) , 890–896 (2012).
  • Filippakopoulos P , KnappS. The bromodomain interaction module. FEBS Lett.586(17) , 2692–2704 (2012).
  • Dhalluin C , CarlsonJE, ZengL, HeC, AggarwalAK, ZhouMM. Structure and ligand of a histone acetyltransferase bromodomain. Nature399(6735) , 491–496 (1999).
  • Mujtaba S , HeY, ZengL et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell. 13(2) , 251–263 (2004).
  • Fitzgerald KT , DiazMO. MLL2: a new mammalian member of the trx/MLL family of genes. Genomics59(2) , 187–192 (1999).
  • Shen W , XuC, HuangW et al. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry 46(8) , 2100–2110 (2007).
  • Filippakopoulos P , QiJ, PicaudS et al. Selective inhibition of BET bromodomains. Nature 468(7327) , 1067–1073 (2010).
  • Nicodeme E , JeffreyKL, SchaeferU et al. Suppression of inflammation by a synthetic histone mimic. Nature 468(7327) , 1119–1123 (2010).
  • Chung CW , CosteH, WhiteJH et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J. Med. Chem. 54(11) , 3827–3838 (2011).
  • Delmore JE , IssaGC, LemieuxME et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6) , 904–917 (2011).
  • Mertz JA , ConeryAR, BryantBM et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA 108(40) , 16669–16674 (2011).
  • Momparler RL . Cancer epigenetics. Oncogene22(42) , 6479–6483 (2003).
  • Hiraga J , TomitaA, SugimotoT et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 113(20) , 4885–4893 (2009).
  • Shi W , HanX, YaoJ, YangJ, ShiY. Combined effect of histone deacetylase inhibitor suberoylanilide hydroxamic acid and anti-CD20 monoclonal antibody rituximab on mantle cell lymphoma cells apoptosis. Leukemia Res.36(6) , 749–755 (2012).
  • Ageberg M , RydstromK, RelanderT, DrottK. The histone deacetylase inhibitor valproic acid sensitizes diffuse large B-cell lymphoma cell lines to CHOP-induced cell death. Am. J. Transl. Res.5(2) , 170–183 (2013).
  • Dos Santos Ferreira AC , FernandesRA, KweeJK, KlumbCE. Histone deacetylase inhibitor potentiates chemotherapy-induced apoptosis through Bim upregulation in Burkitt‘s lymphoma cells. J. Cancer Res. Clin. Oncol.138(2) , 317–325 (2012).
  • Nagarajan RP , FouseSD, BellRJ, CostelloJF. Methods for cancer epigenome analysis. Adv. Exp. Med. Biol.754 , 313–338 (2013).
  • Clark SS , MclaughlinJ, TimmonsM et al. Expression of a distinctive BCR–ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science 239(4841 Pt 1) , 775–777 (1988).
  • Carroll AJ , CristWM, ParmleyRT, RoperM, CooperMD, FinleyWH. Pre-B cell leukemia associated with chromosome translocation 1;19. Blood63(3) , 721–724 (1984).
  • Lillington DM , YoungBD, BergerR, MartineauM, MoormanAV, Secker-WalkerLM. The t(10;11)(p12;q23) translocation in acute leukaemia: a cytogenetic and clinical study of 20 patients. European 11q23 Workshop participants. Leukemia12(5) , 801–804 (1998).
  • Romana SP , Le Coniat M, Berger R. t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer9(3) , 186–191 (1994).
  • Gesk S , KlapperW, Martin-SuberoJI et al. A chromosomal translocation in cyclin D1-negative/cyclin D2-positive mantle cell lymphoma fuses the CCND2 gene to the IGK locus. Blood 108(3) , 1109–1110 (2006).
  • Horsman DE , OkamotoI, LudkovskiO et al. Follicular lymphoma lacking the t(14;18)(q32;q21): identification of two disease subtypes. Br. J. Haematol. 120(3) , 424–433 (2003).
  • Aarts WM , WillemzeR, BendeRJ, MeijerCJ, PalsST, Van Noesel CJ. VH gene analysis of primary cutaneous B-cell lymphomas: evidence for ongoing somatic hypermutation and isotype switching. Blood92(10) , 3857–3864 (1998).
  • Dohner H , StilgenbauerS, DohnerK, BentzM, LichterP. Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J. Mol. Med. (Berl.)77(2) , 266–281 (1999).
  • Stilgenbauer S , LichterP, DohnerH. Genetic features of B-cell chronic lymphocytic leukemia. Rev. Clin. Exp. Hematol.4(1) , 48–72 (2000).
  • Akagi T , MotegiM, TamuraA et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 18(42) , 5785–5794 (1999).
  • Streubel B , LamprechtA, DierlammJ et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 101(6) , 2335–2339 (2003).
  • Streubel B , VinatzerU, LamprechtA, RadererM, ChottA. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia19(4) , 652–658 (2005).
  • Martin-Subero JI , IbbotsonR, KlapperW et al. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia 21(7) , 1532–1544 (2007).
  • Gazzo S , BaseggioL, CoignetL et al. Cytogenetic and molecular delineation of a region of chromosome 3q commonly gained in marginal zone B-cell lymphoma. Haematologica 88(1) , 31–38 (2003).
  • Sambani C , TrafalisDT, Mitsoulis-MentzikoffC et al. Clonal chromosome rearrangements in hairy cell leukemia: personal experience and review of literature. Cancer Genet. Cytogenet. 129(2) , 138–144 (2001).
  • Willis TG , DyerMJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood96(3) , 808–822 (2000).
  • Schop RF , KuehlWM, Van Wier SA et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood100(8) , 2996–3001 (2002).
  • Poulain S , RoumierC, DecambronA et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood 121(22) , 4504–4511 (2013).
  • Ngo VN , YoungRM, SchmitzR et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470(7332) , 115–119 (2011).
  • Franke S , WlodarskaI, MaesB et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin‘s lymphoma. Am. J. Pathol. 161(5) , 1861–1867 (2002).
  • Hallermann C , KauneKM, GeskS et al. Molecular cytogenetic analysis of chromosomal breakpoints in the IGH, MYC, BCL6, and MALT1 gene loci in primary cutaneous B-cell lymphomas. J. Invest. Dermatol. 123(1) , 213–219 (2004).
  • Wessendorf S , BarthTF, ViardotA et al. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia 21(12) , 2463–2469 (2007).
  • Gesk S , GascoyneRD, SchnitzerB et al. ALK-positive diffuse large B-cell lymphoma with ALK-Clathrin fusion belongs to the spectrum of pediatric lymphomas. Leukemia 19(10) , 1839–1840 (2005).
  • Schmitz R , YoungRM, CeribelliM et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418) , 116–120 (2012).
  • Graux C , CoolsJ, MichauxL, VandenbergheP, HagemeijerA. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia20(9) , 1496–1510 (2006).
  • Virgilio L , NarducciMG, IsobeM et al. Identification of the TCL1 gene involved in T-cell malignancies. Proc. Natl Acad. Sci. USA 91(26) , 12530–12534 (1994).
  • Stern MH , SoulierJ, RosenzwajgM et al. MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene 8(9) , 2475–2483 (1993).
  • Nakashima Y , TagawaH, SuzukiR et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer 44(3) , 247–255 (2005).
  • Przybylski GK , DikWA, WanzeckJ et al. Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B–TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia 19(2) , 201–208 (2005).
  • Oshiro A , TagawaH, OhshimaK et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood 107(11) , 4500–4507 (2006).
  • Siu LL , ChanV, ChanJK, WongKF, LiangR, KwongYL. Consistent patterns of allelic loss in natural killer cell lymphoma. Am. J. Pathol.157(6) , 1803–1809 (2000).
  • Zettl A , OttG, MakulikA et al. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am. J. Pathol. 161(5) , 1635–1645 (2002).
  • Wlodarska I , Martin-GarciaN, AchtenR et al. Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer 33(3) , 243–251 (2002).
  • Almire C , BertrandP, RuminyP et al. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosomes Cancer 46(11) , 1011–1018 (2007).
  • Lepretre S , BuchonnetG, StamatoullasA et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet. Cytogenet. 117(1) , 71–79 (2000).
  • Morris SW , KirsteinMN, ValentineMB et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin‘s lymphoma. Science 263(5151) , 1281–1284 (1994).
  • Batista DA , VonderheidEC, HawkinsA et al. Multicolor fluorescence in situ hybridization (SKY) in mycosis fungoides and Sezary syndrome: search for recurrent chromosome abnormalities. Genes Chromosomes Cancer 45(4) , 383–391 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.