195
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Histone Modifications: Implications in Renal Cell Carcinoma

, &
Pages 453-462 | Published online: 29 Jul 2013

References

  • Ellis L , AtadjaPW, JohnstoneRW. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther.8(6) , 1409–1420 (2009).
  • Hake SB , XiaoA, AllisCD. Linking the epigenetic ‘language‘ of covalent histone modifications to cancer. Br. J. Cancer90(4) , 761–769 (2004).
  • Wang GG , AllisCD, ChiP. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med.13(9) , 363–372 (2007).
  • Ellinger J , KahlP, MertensC et al. Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int. J. Cancer 127(10) , 2360–2366 (2010).
  • Turner BM . Histone acetylation and an epigenetic code. BioEssays22(9) , 836–845 (2000).
  • Iizuka M , SmithMM. Functional consequences of histone modifications. Curr. Opin Genet. Dev.13(2) , 154–160 (2003).
  • Grant P . A tale of histone modifications. Genome Biol.2(4) , 3.1–3.6 (2001).
  • Milne JC , DenuJM. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr. Opin Chem. Biol.12(1) , 11–17 (2008).
  • Bolden JE , PeartMJ, JohnstoneRW. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov.5(9) , 769–784 (2006).
  • Cortez CC , JonesPA. Chromatin, cancer and drug therapies. Mutat. Res.647(1–2) , 44–51 (2008).
  • Greiner D , BonaldiT, EskelandR, RoemerE, ImhofA. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol.1(3) , 143–145 (2005).
  • Zeisberg M , KalluriR. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med. (Berl.)82(3) , 175–181 (2004).
  • Kleer CG , CaoQ, VaramballyS et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100(20) , 11606–11611 (2003).
  • Sato A , AsanoT, ItoK, SumitomoM, AsanoT. Suberoylanilide hydroxamic acid (SAHA) combined with bortezomib inhibits renal cancer growth by enhancing histone acetylation and protein ubiquitination synergistically. BJU Int.109(8) , 1258–1268 (2011).
  • Ozdag H , TeschendorffA, AhmedA et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7(1) , 90 (2006).
  • Pradhan S , ChinHG, Estève P-O, Jacobsen SE. SET7/9 mediated methylation of non‑histone proteins in mammalian cells. Epigenetics4(6) , 383–387 (2009).
  • Chi P , AllisCD, WangGG. Covalent histone modifications – miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer10(7) , 457–469 (2010).
  • Di Stefano L , DysonNJ. The emerging roles for histone demethylases in the modulation of signaling pathways. Biomol. Concepts4(1) , 13–27 (2013).
  • Berry WL , JanknechtR. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res.73(10) , 2936–2942 (2013).
  • Nightingale KP , O‘NeillLP, TurnerBM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr. Opin Genet. Dev.16(2) , 125–136 (2006).
  • He H , LehmingN. Global effects of histone modifications. Brief. Funct. Genomic. Proteomic.2(3) , 234–243 (2003).
  • Bártová E , KrejčíJ, HarničarováA, GaliováG, KozubekS. Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem.56(8) , 711–721 (2008).
  • Li E . Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet.3(9) , 662–673 (2002).
  • Mahalingam D , MedinaEC, EsquivelJA et al. Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clin. Cancer Res. 16(1) , 141–153 (2010).
  • Latham JA , DentSYR. Cross-regulation of histone modifications. Nat. Struct. Mol. Biol.14(11) , 1017–1024 (2007).
  • Cha TL , ChuangMJ, WuST et al. Dual degradation of Aurora A and B kinases by the histone deacetylase inhibitor LBH589 induces G2-M arrest and apoptosis of renal cancer cells. Clin. Cancer Res. 15(3) , 840–850 (2009).
  • Cheung P , AllisCD, Sassone-CorsiP. Signaling to chromatin through histone modifications. Cell103(2) , 263–271 (2000).
  • Peterson CL , LanielMA. Histones and histone modifications. Curr. Biol.14(14) , R546–R551 (2004).
  • Francois F . DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin Genet. Dev.15(5) , 490–495 (2005).
  • Cea M , SonciniD, FruscioneF et al. Synergistic interactions between HDAC and Sirtuin inhibitors in human leukemia cells. PLoS One 6(7) , e22739 (2011).
  • Lara E , MaiA, CalvaneseV et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28(8) , 1168–1168 (2009).
  • Choi K -C, Jung MG, Lee YH et al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res.69(2) , 583–592 (2009).
  • Cui L , MiaoJ, FuruyaT et al. Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro plasmodium falciparum development. Eukaryot. Cell 7(7) , 1200–1210 (2008).
  • Furdas SD , KannanS, SipplW, JungM. Small molecule inhibitors of histone acetyltransferases as epigenetic tools and drug candidates. Arch. Pharm. (Weinheim)345(1) , 7–21 (2012).
  • Wagner T , JungM. New lysine methyltransferase drug targets in cancer. Nat. Biotechnol.30(7) , 622–623 (2012).
  • Zagni C , ChiacchioU, RescifinaA. Histone methyltransferase inhibitors: novel epigenetic agents for cancer treatment. Curr. Med. Chem.20(2) , 167–185 (2013).
  • Lohse B , KristensenJL, KristensenLH et al. Inhibitors of histone demethylases. Bioorg. Med. Chem. 19(12) , 3625–3636 (2011).
  • Sayegh J , CaoJ, ZouMR et al. Identification of small molecule inhibitors of jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase by a sensitive high‑throughput screen. J. Biol. Chem. 288(13) , 9408–9417 (2013).
  • Fraga MF , BallestarE, Villar-GareaA et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37(4) , 391–400 (2005).
  • Metzger E , WissmannM, YinN et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057) , 436–439 (2005).
  • Kurdistani SK . Histone modifications as markers of cancer prognosis: a cellular view. Br. J. Cancer97(1) , 1–5 (2007).
  • Cheng H -L, Mostoslavsky R, Saito SI et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA100(19) , 10794–10799 (2003).
  • Li M , LuoJ, BrooksCL, GuW. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem.277(52) , 50607–50611 (2002).
  • Roy S , PackmanK, JeffreyR, TenniswoodM. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ.12(5) , 482–491 (2005).
  • Kai L , SamuelSK, LevensonAS. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int. J. Cancer126(7) , 1538–1548 (2010).
  • Qian DZ , KachhapSK, CollisSJ et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1α. Cancer Res. 66(17) , 8814–8821 (2006).
  • Beyer S , KristensenMM, JensenKS, JohansenJV, StallerP. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem.283(52) , 36542–36552 (2008).
  • Krieg AJ , RankinEB, ChanD, RazorenovaO, FernandezS, GiacciaAJ. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1{alpha} enhances hypoxic gene expression and tumor growth. Mol. Cell. Biol.30(1) , 344–353 (2010).
  • Guo X , ShiM, SunL et al. The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma 58(2) , 153–157 (2011).
  • Niu X , ZhangT, LiaoL et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31(6) , 776–786 (2012).
  • Yoshikawa M , HishikawaK, MarumoT, FujitaT. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-β1 in human renal epithelial cells. J. Am. Soc. Nephrol.18(1) , 58–65 (2007).
  • Vanoosten RL , EarelJK Jr, Griffith TS. Enhancement of Ad5-TRAIL cytotoxicity against renal cell carcinoma with histone deacetylase inhibitors. Cancer Gene Ther.13(6) , 628–632 (2006).
  • Verheul HMW , SalumbidesB, Van Erp K et al. Combination strategy targeting the hypoxia inducible factor-1α with mammalian target of rapamycin and histone deacetylase inhibitors. Clin. Cancer Res.14(11) , 3589–3597 (2008).
  • Kanao K , MikamiS, MizunoR, ShinojimaT, MuraiM, OyaM. Decreased acetylation of histone H3 in renal cell carcinoma: a potential target of histone deacetylase inhibitors. J. Urol.180(3) , 1131–1136 (2008).
  • Duns G , Van Den Berg E, Van Duivenbode I et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res.70(11) , 4287–4291 (2010).
  • Dalgliesh GL , FurgeK, GreenmanC et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279) , 360–363 (2010).
  • Varela I , TarpeyP, RaineK et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331) , 539–542 (2011).
  • Hakimi AA , Chen Y-B, Wren J et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol.63(5) , 848–854 (2012).
  • Sakurai T , BilimVN, UgolkovAV et al. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem. Biophys. Res. Commun. 422(4) , 607–614 (2012).
  • Shen Y , GuoX, WangY et al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma. BMC Cancer 12(1) , 470 (2012).
  • Richon V , ZhouX, RifkindR, MarksP. Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol. Dis.27(1) , 260–264 (2001).
  • Ajiro K , NishimotoT. Specific site of histone H3 phosphorylation related to the maintenance of premature chromosome condensation. Evidence for catalytically induced interchange of the subunits. J. Biol. Chem.260(29) , 15379–15381 (1985).
  • Tikoo K , LauSS, MonksTJ. Histone H3 phosphorylation is coupled to poly-(ADP-Ribosylation) during reactive oxygen species‑induced cell death in renal proximal tubular epithelial cells. Mol. Pharmacol.60(2) , 394–402 (2001).
  • Nan X , NgHH, JohnsonCA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683) , 386–389 (1998).
  • Majid S , DarAA, AhmadAE et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4) , 662–670 (2009).
  • Touma SE , GoldbergJS, MoenchP et al. Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin. Cancer Res. 11(9) , 3558–3566 (2005).
  • Wang X -F, Qian DZ, Ren M et al. Epigenetic modulation of retinoic acid receptor β2 by the histone deacetylase inhibitor MS-275 in human renal cell carcinoma. Clin. Cancer Res.11(9) , 3535–3542 (2005).
  • Minardi D , LucariniG, FilosaA et al. Do DNA-methylation and histone acetylation play a role in clear cell renal carcinoma? Analysis of radical nephrectomy specimens in a long-term follow-up. Int. J. Immunopathol. Pharmacol. 24(1) , 149–158 (2011).
  • Rogenhofer S , KahlP, HolzapfelS, Von Ruecker A, Mueller SC, Ellinger J. Decreased levels of histone H3K9me1 indicate poor prognosis in patients with renal cell carcinoma. Anticancer Res.32(3) , 879–886 (2012).
  • Mosashvilli D , KahlP, MertensC et al. Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer Sci. 101(12) , 2664–2669 (2010).
  • Seligson DB , HorvathS, McbrianMA et al. Global levels of histone modifications predict prognosis in different cancers. Am. J. Pathol. 174(5) , 1619–1628 (2009).
  • Xia W , NagaseS, MontiaAG et al. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res. 68(6) , 1667–1674 (2008).
  • Pawłowski R , MühlSM, SulserT, KrekW, MochH, SchramlP. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int. J. Cancer132(2) , E11–E17 (2013).
  • Gerlinger M , RowanAJ, HorswellS et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10) , 883–892 (2012).
  • Van Den Berg A , BuysCHCM. Involvement of multiple loci on chromosome 3 in renal cell cancer development. Genes Chromosomes Cancer19(2) , 59–76 (1997).
  • Hakimi AA , OstrovnayaI, RevaB et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 19(12) , 3259–3267 (2013).
  • Bernt Kathrin M , ZhuN, Sinha Amit U et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell20(1) , 66–78 (2011).
  • Pajtler K , WeingartenC, ThorT et al. The KDM1A histone demethylase is a promising new target for the epigenetic therapy of medulloblastoma. Acta Neuropathol. Comm. 1(1) , 19 (2013).
  • Koh CM , IwataT, ZhengQ, BethelC, YegnasubramanianS, De Marzo AM. Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget2(9) , 669–683 (2011).
  • Mccabe MT , OttHM, GanjiG et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427) , 108–112 (2012).
  • Chan K -M, Fang D, Gan H et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev.27(9) , 985–990 (2013).
  • Jones J , JuengelE, MickuckyteA et al. Valproic acid blocks adhesion of renal cell carcinoma cells to endothelium and extracellular matrix. J. Cell. Mol. Med. 13(8b) , 2342–2352 (2009).
  • Kato Y , YoshimuraK, ShinT et al. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin. Cancer Res. 13(15) , 4538–4546 (2007).
  • Rogenhofer S , KahlP, MertensC et al. Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int. 109(3) , 459–465 (2011).
  • Fritzsche F , WeichertW, RoskeA et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 8(1) , 381 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.