759
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA Methylation and Differentiation: Silencing, Upregulation and Modulation of Gene Expression

&
Pages 553-568 | Published online: 24 Sep 2013

References

  • Meissner A , MikkelsenTS, GuH et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205) , 766–770 (2008).
  • Ndlovu MN , DenisH, FuksF. Exposing the DNA methylome iceberg. Trends Biochem. Sci.36(7) , 381–387 (2011).
  • Lister R , PelizzolaM, DowenRH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271) , 315–322 (2009).
  • Wang H , MauranoMT, QuH et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22(9) , 1680–1688 (2012).
  • Zhou Y , LuY, TianW. Epigenetic features are significantly associated with alternative splicing. BMC Genome13 , 123 (2012).
  • Varley KE , GertzJ, BowlingKM et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23(3) , 555–567 (2013).
  • Tsumagari K , BaribaultC, TerragniJ et al. Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics 8(3) , 317–332 (2013).
  • Ernst J , KheradpourP, MikkelsenTS et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345) , 43–49 (2011).
  • Heintzman ND , RenB. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev.19(6) , 541–549 (2009).
  • Barski A , CuddapahS, CuiK et al. High-resolution profiling of histone methylations in the human genome. Cell 129(4) , 823–837 (2007).
  • Hu G , CuiK, NorthrupD et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12(2) , 180–192 (2013).
  • Le May N , FradinD, IltisI, BougneresP, EglyJM. XPG and XPF endonucleases trigger chromatin looping and DNA demethylation for accurate expression of activated genes. Mol. Cell47(4) , 622–632 (2012).
  • Xi H , ShulhaHP, LinJM et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3(8) , e136 (2007).
  • Jones PA , WolkowiczMJ, HarringtonMA, GonzalesF. Methylation and expression of the Myo D1 determination gene. Philos. Trans. R. Soc. Lond. B Biol. Sci.326(1235) , 277–284 (1990).
  • Weiss A , KeshetI, RazinA, CedarH. DNA demethylation in vitro: involvement of RNA. Cell86(5) , 709–718 (1996).
  • Ehrlich M , EhrlichK. Effects of DNA methylation on the binding of vertebrate and plant proteins to DNA. In: DNA Methylation: Biological Significance. Jost JP, Saluz HP (Eds). Birkhauser Verlag, MA, USA, 145–168 (1993).
  • Rishi V , BhattacharyaP, ChatterjeeR et al. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proc. Natl Acad. Sci. USA 107(47) , 20311–20316 (2010).
  • Oikawa Y , OmoriR, NishiiT, IshidaY, KawaichiM, MatsudaE. The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression. Cell Res.21(11) , 1578–1590 (2011).
  • Tao Y , XiS, BrionesV, MueggeK. Lsh mediated RNA polymerase II stalling at HoxC6 and HoxC8 involves DNA methylation. PLoS One5(2) , e9163 (2011).
  • Jaenisch R , BirdA. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet.33(Suppl.) , S245–S254 (2003).
  • Feng J , FanG. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int. Rev. Neurobiol.89 , 67–84 (2009).
  • Rivera RM , RossJW. Epigenetics in fertilization and preimplantation embryo development. Prog. Biophys. Mol. Biol. doi:10.1016/j.pbiomolbio.2013.02.001 (2013) (Epub ahead of print).
  • Ehrlich M , Gama-SosaM, HuangLH et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 10 , 2709–2721 (1982).
  • Ehrlich M . DNA methylation in cancer: too much, but also too little. Oncogene21(35) , 5400–5413 (2002).
  • Patel DR , RichardsonBC. Dissecting complex epigenetic alterations in human lupus. Arthritis Res. Ther.15(1) , 201 (2013).
  • Huidobro C , FernandezAF, Fraga,MF. The role of genetics in the establishment and maintenance of the epigenome. Cell Mol. Life Sci.70(9) , 1543–1573 (2013).
  • Csankovszki G , NagyA, JaenischR. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol.153(4) , 773–784 (2001).
  • Weaver JR , SarkisianG, KrappC, MagerJ, MannMR, BartolomeiMS. Domain-specific response of imprinted genes to reduced DNMT1. Mol. Cell Biol.30(16) , 3916–3928 (2010).
  • Tao Y , XiS, ShanJ et al. Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc. Natl Acad. Sci. USA 108(14) , 5626–5631 (2011).
  • Wang T , PanQ, LinL et al. Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum. Hum. Mol. Genet. 21(26) , 5500–5510 (2012).
  • Bhutani N , BurnsDM, BlauHM. DNA demethylation dynamics. Cell146(6) , 866–872 (2011).
  • Kriaucionis S , HeintzN. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324(5929) , 929–930 (2009).
  • Sartorelli V , JuanAH. Sculpting chromatin beyond the double helix: epigenetic control of skeletal myogenesis. Curr. Top. Dev. Biol.96 , 57–83 (2011).
  • Sousa-Victor P , Munoz-CanovesP, PerdigueroE. Regulation of skeletal muscle stem cells through epigenetic mechanisms. Toxicol. Mech. Methods21(4) , 334–342 (2011).
  • Constantinides PG , JonesPA, GeversW. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature267(5609) , 364–366 (1977).
  • Lassar AB , PatersonBM, WeintraubH. Transfection of a DNA locus that mediates the conversion of 10.1/2 fibroblasts to myoblasts. Cell47(5) , 649–656 (1986).
  • Szyf M , RouleauJ, ThebergeJ, BozovicV. Induction of myogenic differentiation by an expression vector encoding the DNA methyltransferase cDNA sequence in the antisense orientation. J. Biol. Chem.267(18) , 12831–12836 (1992).
  • Zhang F , PomerantzJH, SenG, PalermoT, BlauHM. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl Acad. Sci. USA104(11) , 4395–4400 (2007).
  • Hupkes M , JonssonMK, ScheenenWJ et al. Epigenetics: DNA demethylation promotes skeletal myotube maturation. FASEB J. 25(11) , 3861–3872 (2011).
  • Hupkes M , van Someren EP, Middelkamp SH, Piek E, van Zoelen EJ, Dechering KJ. DNA methylation restricts spontaneous multi-lineage differentiation of mesenchymal progenitor cells, but is stable during growth factor-induced terminal differentiation. Biochim. Biophys. Acta1813(5) , 839–849 (2011).
  • Rosca AM , BurlacuA. Effect of 5-azacytidine: evidence for alteration of the multipotent ability of mesenchymal stem cells. Stem Cells Dev.20(7) , 1213–1221 (2011).
  • Mohn F , WeberM, RebhanM et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30(6) , 755–766 (2008).
  • Farthing CR , FiczG, NgRK et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4(6) , e1000116 (2008).
  • Li E , BestorTH, JaenischR. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69 , 915–926 (1992).
  • Pekowska A , BenoukrafT, Zacarias-CabezaJ et al. H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 30(20) , 4198–4210 (2011).
  • Laurent L , WongE, LiG et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20(3) , 320–331 (2010).
  • Toth M , LichtenbergU, DoerflerW. Genomic sequencing reveals a 5-methylcytosine-free domain in active promoters and the spreading of preimposed methylation patterns. Proc. Natl Acad. Sci. USA86(10) , 3728–3732 (1989).
  • Appanah R , DickersonDR, GoyalP, GroudineM, LorinczMC. An unmethylated 3´ promoter-proximal region is required for efficient transcription initiation. PLoS Genet.3(2) , e27 (2007).
  • Maunakea AK , NagarajanRP, BilenkyM et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303) , 253–257 (2010).
  • Ball MP , LiJB, GaoY et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27(4) , 361–368 (2009).
  • Rauch TA , WuX, ZhongX, RiggsAD, PfeiferGP. A human B cell methylome at 100-base pair resolution. Proc. Natl Acad. Sci. USA106(3) , 671–678 (2009).
  • Illingworth R , KerrA, DesousaD et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6(1) , e22 (2008).
  • Yuen RK , NeumannSM, FokAK et al. Extensive epigenetic reprogramming in human somatic tissues between fetus and adult. Epigenet. Chromatin 4 , 7 (2011).
  • Isagawa T , NagaeG, ShirakiN et al. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers. PLoS One 6(10) , e26052 (2011).
  • Berdasco M , MelguizoC, PradosJ et al. DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. Am. J. Pathol. 181(6) , 2079–2093 (2012).
  • Wang T , ChenM, LiuL et al. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production. Toxicol. Appl. Pharmacol. 257(3) , 328–337 (2011).
  • Venza I , VisalliM, FortunatoC et al. PGE2 induces interleukin-8 derepression in human astrocytoma through coordinated DNA demethylation and histone hyperacetylation. Epigenetics 7(11) , 1315–1330 (2012).
  • Hansen KD , LangmeadB, IrizarryRA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol.13(10) , R83 (2012).
  • Pedersen BS , SchwartzDA, YangIV, KechrisKJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics28(22) , 2986–2988 (2012).
  • Guo JU , SuY, ZhongC, MingGL, SongH. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell145(3) , 423–434 (2011).
  • Tsumagari K , ChangSC, LaceyM et al. Gene expression during normal and FSHD myogenesis. BMC Med. Genomics 4 , 67 (2011).
  • Ficz G , BrancoMR, SeisenbergerS et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347) , 398–402 (2011).
  • Palacios D , SummerbellD, RigbyPW, BoyesJ. Interplay between DNA methylation and transcription factor availability: implications for developmental activation of the mouse Myogenin gene. Mol. Cell Biol.30(15) , 3805–3815 (2010).
  • Faralli H , DilworthFJ. Turning on myogenin in muscle: a paradigm for understanding mechanisms of tissue-specific gene expression. Comp. Funct. Genomics2012 , 836374 (2012).
  • Gimble JM , DorheimMA, YoukhanaK et al. Alternatively spliced pp52 mRNA in nonlymphoid stromal cells. J. Immunol. 150(1) , 115–121 (1993).
  • Jongstra-Bilen J , JongstraJ. Leukocyte-specific protein 1 (LSP1): a regulator of leukocyte emigration in inflammation. Immunol. Res.35(1–2) , 65–74 (2006).
  • Cao Y , YaoZ, SarkarD et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev. Cell 18(4) , 662–674 (2010).
  • Warner JB , PhilippakisAA, JaegerSA, HeFS, LinJ, BulykML. Systematic identification of mammalian regulatory motifs‘ target genes and functions. Nat. Methods5(4) , 347–353 (2008).
  • Trapnell C , WilliamsBA, PerteaG et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5) , 511–515 (2010).
  • Huang LH , WangR, Gama-SosaMA, ShenoyS, EhrlichM. A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature308 , 293–295 (1984).
  • Ng HH , JeppesenP, BirdA. Active repression of methylated genes by the chromosomal protein MBD1. Mol. Cell Biol.20(4) , 1394–1406 (2000).
  • Lucarelli M , FusoA, StromR, ScarpaS. The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J. Biol. Chem.276(10) , 7500–7506 (2001).
  • Tsumagari K , BaribaultC, TerragniJ et al. DNA methylation and differentiation: HOX genes in muscle cells. Epigenet. Chromatin 6 , 25 (2013).
  • Soshnikova N , DubouleD. Epigenetic regulation of vertebrate Hox genes: a dynamic equilibrium. Epigenetics4(8) , 537–540 (2009).
  • Simrick S , SzumskaD, GardinerJR et al. Biallelic expression of Tbx1 protects the embryo from developmental defects caused by increased receptor tyrosine kinase signaling. Dev. Dyn. 8 , 1310–1324 (2012).
  • Yu DH , WareC, WaterlandRA et al. Developmentally programmed 3´ CpG island methylation confers tissue- and cell-type specific transcriptional activation. Mol. Cell Biol. 33(9) , 1845–1858 (2013).
  • Ziebarth JD , BhattacharyaA, CuiY. CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res.41(Database issue) , D188–D194 (2013).
  • Hou C , DaleR, DeanA. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl Acad. Sci. USA107(8) , 3651–3656 (2010).
  • Gelfman S , CohenN, YearimA, AstG. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure. Genome Res.23(5) , 789–799 (2013).
  • Anastasiadou C , MalousiA, MaglaverasN, KouidouS. Human epigenome data reveal increased CpG methylation in alternatively spliced sites and putative exonic splicing enhancers. DNA Cell Biol.30(5) , 267–275 (2011).
  • Oberdoerffer S . A conserved role for intragenic DNA methylation in alternative pre-mRNA splicing. Transcription3(3) , 106–109 (2012).
  • Bell ML , BuvoliM, LeinwandLA. Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol. Cell Biol.30(8) , 1937–1945 (2010).
  • Sasaki YT , SanoM, KinT, AsaiK, HiroseT. Coordinated expression of ncRNAs and HOX mRNAs in the human HOXA locus. Biochem. Biophys. Res. Commun.357(3) , 724–730 (2007).
  • Sessa L , BreilingA, LavorgnaG, SilvestriL, CasariG, OrlandoV. Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA13(2) , 223–239 (2007).
  • Lorincz MC , DickersonDR, SchmittM, GroudineM. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol.11(11) , 1068–1075 (2004).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.