303
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Early-Life Lead Exposure Results in Dose- and Sex-Specific Effects on Weight and Epigenetic Gene Regulation in Weanling Mice

, , , &
Pages 487-500 | Published online: 24 Sep 2013

References

  • Barker D . Intrauterine programming of coronary heart disease and stroke. Acta Paediatra Suppl.423 , 178–182 (1997).
  • Barker D . Programming the baby. In: Mothers, Babies, and Disease in Later Life. Barker D (Ed.). BMJ Publishing, London, UK (1994).
  • Hu H , Tellez-RojoMM, BellingerD et al. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ. Health Perspect. 114(11) , 1730–1735 (2006).
  • Bellinger DC . Teratogen update: lead and pregnancy. Birth Defects Res. A Clin. Mol. Teratol.73(6) , 409–420 (2005).
  • Lanphear BP , HornungR, KhouryJ et al. Low-level environmental lead exposure and children‘s intellectual function: an international pooled analysis. Environ. Health Perspect. 113(7) , 894–899 (2005).
  • Navas-Acien A , GuallarE, SilbergeldEK, RothenbergSJ. Lead exposure and cardiovascular disease – a systematic review. Environ. Health Perspect.115(3) , 472–482 (2007).
  • Wong GP , NgTL, MartinTR, FarquharsonDF. Effects of low-level lead exposure in utero.Obstet. Gynecol. Surv.47(5) , 285–289 (1992).
  • Agency for Toxic Substances and Disease Registry. Toxicological Profile for Lead. Agency for Toxic Substances and Disease Registry, GA, USA (2007).
  • Gilbert SG , WeissB. A rationale for lowering the blood lead action level from 10 to 2 microg/dl. Neurotoxicology27(5) , 693–701 (2006).
  • Snyder JE , FilipovNM, ParsonsPJ, LawrenceDA. The efficiency of maternal transfer of lead and its influence on plasma IgE and splenic cellularity of mice. Toxicol. Sci.57(1) , 87–94 (2000).
  • Leasure JL , GiddabasappaA, ChaneyS et al. Low-level human equivalent gestational lead exposure produces sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice. Environ. Health Perspect. 116(3) , 355–361 (2008).
  • Iavicoli I , CarelliG, StanekEJ, CastellinoN, LiZ, CalabreseEJ. Low doses of dietary lead are associated with a profound reduction in the time to the onset of puberty in female mice. Reprod. Toxicol.22(4) , 586–590 (2006).
  • Faulk C , DolinoyDC. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics6(7) , 791–797 (2011).
  • Lim U , SongMA. Dietary and lifestyle factors of DNA methylation. Methods Mol. Biol.863 , 359–376 (2012).
  • Anderson OS , NaharMS, FaulkC et al. Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ. Mol. Mutagen. 53(5) , 334–342 (2012).
  • Koedrith P , KimH, WeonJI, SeoYR. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health216(5) , 587–598 (2013).
  • Dolinoy DC . The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev.66(Suppl. 1) , S7–S11 (2008).
  • Waterland RA , DolinoyDC, LinJR, SmithCA, ShiX, TahilianiKG. Maternal methyl supplements increase offspring DNA methylation at axin fused. Genesis44(9) , 401–406 (2006).
  • Dolinoy DC , WeidmanJR, WaterlandRA, JirtleRL. Maternal genistein alters coat color and protects avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect.114(4) , 567–572 (2006).
  • Rakyan VK , BlewittME, DrukerR, PreisJI, WhitelawE. Metastable epialleles in mammals. Trends Genet.18(7) , 348–351 (2002).
  • Hackett JA , SuraniMA. DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R Soc. Lond. B Biol. Sci.368(1609) , 20110328 (2013).
  • Downing C , JohnsonTE, LarsonC et al. Subtle decreases in DNA methylation and gene expression at the mouse Igf2 locus following prenatal alcohol exposure: effects of a methyl-supplemented diet. Alcohol 45(1) , 65–71 (2011).
  • McKay JA , WilliamsEA, MathersJC. Effect of maternal and post-weaning folate supply on gene-specific DNA methylation in the small intestine of weaning and adult apc and wild type mice. Front. Genet.2 , 23 (2011).
  • Ding GL , WangFF, ShuJ et al. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61(5) , 1133–1142 (2012).
  • Zhang XF , ZhangLJ, FengYN et al. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol. Biol. Rep. 39(9) , 8621–8628 (2012).
  • Somm E , StouderC, Paoloni-GiacobinoA. Effect of developmental dioxin exposure on methylation and expression of specific imprinted genes in mice. Reprod. Toxicol.35 , 150–155 (2013).
  • Susiarjo M , SassonI, MesarosC, BartolomeiMS. Bisphenol A exposure disrupts genomic imprinting in the mouse. PLoS Genet.9(4) , e1003401 (2013).
  • Gallou-Kabani C , GaboryA, TostJ et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 5(12) , e14398 (2010).
  • Waterland RA , JirtleRL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol.23(15) , 5293–5300 (2003).
  • Green MR , SambrookJ. Molecular Cloning: A Laboratory Manual (4th Edition). Cold Spring Harbor Laboratory Press, NY, USA (2012).
  • Grunau C , ClarkSJ, RosenthalA. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res.29(13) , E65–E65 (2001).
  • Druker R . Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Res.32(19) , 5800–5808 (2004).
  • Waterland RA , LinJR, SmithCA, JirtleRL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum. Mol. Genet.15(5) , 705–716 (2006).
  • Fauque P , RipocheMA, TostJ et al. Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos. Hum. Mol. Genet. 19(9) , 1779–1790 (2010).
  • Miltenberger RJ , MynattRL, WilkinsonJE, WoychikRP. The role of the agouti gene in the yellow obese syndrome. J. Nutr.127(9) , 1902S–1907S (1997).
  • Rossi-George A , VirgoliniMB, WestonD, Cory-SlechtaDA. Alterations in glucocorticoid negative feedback following maternal Pb, prenatal stress and the combination: a potential biological unifying mechanism for their corresponding disease profiles. Toxicol. Appl. Pharmacol.234(1) , 117–127 (2009).
  • Ronis MJ , BadgerTM, ShemaSJ et al. Endocrine mechanisms underlying the growth effects of developmental lead exposure in the rat. J. Toxicol. Environ. Health A 54(2) , 101–120 (1998).
  • Pine M , HineyJ, DearthR, BrattonJ, Les Dees WL. IGF-1 administration to prepubertal female rats can overcome delayed puberty caused by maternal Pb exposure. Reprod. Toxicol.21 , 104–109 (2006).
  • Dearth RK , HineyJK, SrivastavaV, BurdickSB, BrattonGR, DeesWL. Effects of lead (Pb) exposure during gestation and lactation on female pubertal development in the rat. Reprod. Toxicol.16(4) , 343–352 (2002).
  • McGivern RF , SokolRZ, BermanNG. Prenatal lead exposure in the rat during the third week of gestation: long-term behavioral, physiological, and anatomical effects associated with reproduction. Toxicol. Appl. Pharmacol.110(2) , 206–215 (1991).
  • Petrusz P , WeaverCM, GrantLD, MushakP, KrigmanMR. Lead poisoning and reproduction: effects on pituitary and serum gonadotropins in neonatal rats. Environ. Res.19(2) , 383–391 (1979).
  • Gorbel F , BoujelbeneM, Makni-AyadiF et al. Cytotoxic effects of lead on the endocrine and exocrine sexual function of pubescent male and female rats. Demonstration of apoptotic activity. C R Biol. 325(9) , 927–940 (2002).
  • Ronis MJ , GandyJ, BadgerT. Endocrine mechanisms underlying reproductive toxicity in the developing rat chronically exposed to dietary lead. J. Toxicol. Environ. Health A54(2) , 77–99 (1998).
  • Faulk C , BarksA, DolinoyDC. Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse IAP class of transposons. BMC Genomics14(1) , 48 (2013).
  • Bernal AJ , DolinoyDC, HuangD, SkaarDA, WeinhouseC, JirtleRL. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. FASEB J.27(2) , 665–671 (2013).
  • Li G , KohorstJJ, ZhangW et al. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice. Diabetes 62(8) , 2773–2783 (2013).
  • Patel BB , RaadM, SebagIA, ChalifourLE. Lifelong exposure to bisphenol A alters cardiac structure/function, protein expression, and DNA methylation in adult mice. Toxicol. Sci.133(1) , 174–185 (2013).
  • Sterrenburg L , GasznerB, BoerrigterJ et al. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One 6(11) , e28128 (2011).
  • Schneider JS , KiddS, AndersonDW. Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol. Lett.217(1) , 75–81 (2012).
  • Thompson SL , KonfortovaG, GregoryRI, ReikW, DeanW, FeilR. Environmental effects on genomic imprinting in mammals. Toxicol. Lett.120(1–3) , 143–150 (2001).
  • Heijmans BT , TobiEW, SteinAD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105(44) , 17046–17049 (2008).
  • Roberts CT , OwensJA, Sferruzzi-PerriAN. Distinct actions of insulin-like growth factors (IGFs) on placental development and fetal growth: lessons from mice and guinea pigs. Placenta29(Suppl. A) , S42–S47 (2008).
  • Li YY , ChenT, WanY, XuSQ. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ. Toxicol.27(8) , 495–502 (2012).
  • Park SK , ElmarsafawyS, MukherjeeB et al. Cumulative lead exposure and age-related hearing loss: the VA normative aging study. Hear. Res 269(1–2) , 48–55 (2010).
  • Schwartz BS , HuH. Adult lead exposure: time for change. Environ. Health Perspect.115(3) , 451–454 (2007).
  • Tokar EJ , DiwanBA, WaalkesMP. Early life inorganic lead exposure induces testicular teratoma and renal and urinary bladder preneoplasia in adult metallothionein-knockout mice but not in wild type mice. Toxicology276(1) , 5–10 (2010).
  • Gonzalez-Cossio T , PetersonKE, SaninLH et al. Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics 100(5) , 856–862 (1997).
  • Lee MG , ChunOK, SongWO. Determinants of the blood lead level of US women of reproductive age. J. Am. Coll. Nutr.24(1) , 1–9 (2005).
  • Bernard SM , McGeehinMA. Prevalence of blood lead levels > or = 5 micro g/dl among US children 1 to 5 years of age and socioeconomic and demographic factors associated with blood of lead levels 5 to 10 micro g/dl, Third National Health and Nutrition Examination Survey, 1988–1994. Pediatrics112(6 Pt 1) , 1308–1313 (2003).
  • Kaminen-Ahola N , AholaA, Flatscher-BaderT et al. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome. Birth Defects Res. Part A Clin. Mol. Teratol. 88(10) , 818–826 (2010).
  • Dolinoy DC , WeidmanJR, WaterlandRA, JirtleRL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect.114(4) , 567–572 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.