234
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of Epigenetics in Rett Syndrome

, &
Pages 583-592 | Published online: 24 Sep 2013

References

  • Hagberg B , AicardiJ, DiasK, RamosO. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett‘s syndrome: report of 35 cases. Ann. Neurol.14 , 471–479 (1983).
  • Bienvenu T , PhilippeC, De Roux N et al. The incidence of Rett syndrome in France. Pediatr. Neurol.34 , 372–375 (2006).
  • Webb T , ClarkeA, HanefeldF, PereiraJL, RosenbloomL, WoodsCG. Linkage analysis in Rett syndrome families suggests that there may be a critical region at Xq28. J. Med. Genet.35 , 997–1003 (1998).
  • Amir RE , Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.23 , 185–188 (1999).
  • Kubota T , SaitohS, MatsumotoT et al. Excess functional copy of allele at chromosomal region 11p15 may cause Wiedemann–Beckwith (EMG) syndrome. Am. J. Med. Genet. 49 , 378–383 (1994).
  • Kubota T , DasS, ChristianSL, BaylinSB, HermanJG, LedbetterDH. Methylation-specific PCR simplifies imprinting analysis. Nat. Genet.16 , 16–17 (1997).
  • Kubota T , WakuiK, NakamuraT et al. The proportion of cells with functional X disomy is associated with the severity of mental retardation in mosaic ring X Turner syndrome females. Cytogenet. Genome Res. 99 , 276–284 (2002).
  • Okano M , BellDW, HaberDA, LiE. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99 , 247–257 (1999).
  • Xu GL , BestorTH, Bourc‘hisD et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402 , 187–191 (1999).
  • Shirohzu H , KubotaT, KumazawaA et al. Three novel DNMT3B mutations in Japanese patients with ICF syndrome. Am. J. Med. Genet. 112 , 31–37 (2002).
  • Chunshu Y , EndohK, SoutomeM, KawamuraR, KubotaT. A patient with classic Rett syndrome with a novel mutation in MECP2 exon 1. Clin. Genet.70 , 530–531 (2006).
  • Monteggia LM , KavalaliET. Rett syndrome and the impact of MeCP2 associated transcriptional mechanisms on neurotransmission. Biol. Psychiatry65 , 204–210 (2009).
  • Takeshita E , SaitoY, NakagawaE et al. Late-onset mental deterioration and fluctuating dystonia in a female patient with a truncating MECP2 mutation. J. Neurol. Sci. 308 , 168–172 (2011).
  • Augenstein K , LaneJB, HortonA, SchanenC, PercyAK. Variable phenotypic expression of a MECP2 mutation in a family. J. Neurodev. Disord.1 , 313 (2009).
  • Schanen NC , DahleEJ, CapozzoliF, HolmVA, ZoghbiHY, FranckeU. A new Rett syndrome family consistent with X-linked inheritance expands the X chromosome exclusion map. Am. J. Hum. Genet.61 , 634–641 (1997).
  • Nan X , CampoyFJ, BirdA. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell88 , 471–481 (1997).
  • Kudo S . Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol. Cell. Biol.18 , 5492–5499 (1998).
  • Hendrich B , BirdA. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol.18 , 6538–6547 (1998).
  • Nan X , BirdA. The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome. Brain Dev.23(Suppl. 1) , S32–S37 (2001).
  • Wolffe AP . Histone deacetylase: a regulator of transcription. Science272 , 371–372 (1996).
  • Jones PL , VeenstraGJ, WadePA et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19 , 187–191 (1998).
  • Fuks F , HurdPJ, WolfD, NanX, BirdAP, KouzaridesT. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem.278 , 4035–4040 (2003).
  • Guy J , HendrichB, HolmesM, MartinJE, BirdA. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet.27 , 322–326 (2001).
  • Chen RZ , AkbarianS, TudorM, JaenischR. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet.27 , 327–331 (2001).
  • Collins AL , LevensonJM, VilaythongAP et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13 , 2679–2689 (2004).
  • Van Esch H , BautersM, IgnatiusJ et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77 , 442–453 (2005).
  • Chao HT , ZoghbiHY, RosenmundC. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron56 , 58–65 (2007).
  • Yasui DH , PeddadaS, BiedaMC et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl Acad. Sci. USA 104 , 19416–19421 (2007).
  • Chahrour M , JungSY, ShawC et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320 , 1224–1229 (2008).
  • Mellén M , AyataP, DewellS, KriaucionisS, HeintzN. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell151 , 1417–1430 (2012).
  • Gonzales ML , AdamsS, DunawayKW, LaSalleJM. Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Mol. Cell. Biol.32 , 2894–2903 (2012).
  • Lyst MJ , EkiertR, EbertDH et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16 , 898–902 (2013).
  • Ebert DH , GabelHW, RobinsonND et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature 499 , 341–345 (2013).
  • Young JI , HongEP, CastleJC et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl Acad. Sci. USA 102 , 17551–17558 (2005).
  • Ballestar E , YusufzaiTM, WolffeAP. Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry39 , 7100–7106 (2000).
  • Adkins NL , GeorgelPT. MeCP2: structure and function. Biochem. Cell Biol.89 , 1–11 (2011).
  • Goffin D , AllenM, ZhangL et al. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat. Neurosci. 15 , 274–283 (2011).
  • Shahbazian MD , AntalffyB, ArmstrongDL, ZoghbiHY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet.11 , 115–124 (2002).
  • Nagai K , MiyakeK, KubotaT. A transcriptional repressor MeCP2 causing Rett syndrome is expressed in embryonic non-neuronal cells and controls their growth. Brain Res. Dev. Brain Res.157 , 103–106 (2005).
  • Ballas N , LioyDT, GrunseichC, MandelG. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci.12 , 311–317 (2009).
  • Maezawa I , SwanbergS, HarveyD, LaSalleJM, JinLW. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J. Neurosci.29 , 5051–5061 (2009).
  • Lioy DT , GargSK, MonaghanCE et al. A role for glia in the progression of Rett‘s syndrome. Nature 475 , 497–500 (2011).
  • Derecki NC , CronkJC, LuZ et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484 , 105–109 (2012).
  • Derecki NC , CronkJC, KipnisJ. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol.34 , 144–150 (2013).
  • Tudor M , AkbarianS, ChenRZ, JaenischR. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc. Natl Acad. Sci. USA99 , 15536–15341 (2002).
  • Chen WG , ChangQ, LinY et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302 , 885–889 (2003).
  • Martinowich K , HattoriD, WuH, FouseS, HeF, HuY. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science302 , 890–893 (2003).
  • Karege F , PerretG, BondolfiG, SchwaldM, BertschyG, AubryJM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res.109 , 143–148 (2002).
  • Thompson Ray M , WeickertCS, WyattE, WebsterMJ. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J. Psychiatry Neurosci.36 , 195–203 (2011).
  • Horike S , CaiS, MiyanoM, ChengJF, Kohwi-ShigematsuT. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet.37 , 31–40 (2005).
  • Peddada S , YasuiDH, LaSalleJM. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum. Mol. Genet.15 , 2003–2014 (2006).
  • McGill BE , BundleSF, YaylaogluMB, CarsonJP, ThallerC, ZoghbiHY. Enhanced anxiety and stress-induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA103 , 18267–18272 (2006).
  • Itoh M , IdeS, TakashimaS et al. Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J. Neuropathol. Exp. Neurol. 66 , 117–123 (2007).
  • Carouge D , HostL, AunisD, ZwillerJ, AnglardP. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol. Dis.38 , 414–424 (2010).
  • Miyake K , HirasawaT, SoutomeM et al. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues. implication for pathogenesis of Rett syndrome. BMC Neurosci. 12 , 81 (2011).
  • Chao HT , ZoghbiHY, RosenmundC. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron56 , 58–65 (2007).
  • Kaufmann WE , JarrarMH, WangJS et al. Histone modifications in Rett syndrome lymphocytes: a preliminary evaluation. Brain Dev. 27 , 331–339 (2005).
  • Lilja T , WallenborgK, BjörkmanK et al. Novel alterations in the epigenetic signature of MeCP2-targeted promoters in lymphocytes of Rett syndrome patients. Epigenetics 8 , 246–251 (2013).
  • Vecsler M , SimonAJ, AmariglioN, RechaviG, GakE. MeCP2 deficiency downregulates specific nuclear proteins that could be partially recovered by valproic acid in vitro. Epigenetics5 , 61–67 (2010).
  • Skene PJ , IllingworthRS, WebbS et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37 , 457–468 (2010).
  • Kondo M , GrayLJ, PelkaGJ, ChristodoulouJ, TamPP, HannanAJ. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome – Mecp2 gene dosage effects and BDNF expression. Eur. J. Neurosci.27 , 3342–3350 (2008).
  • Lonetti G , AngelucciA, MorandoL, BoggioEM, GiustettoM, PizzorussoT. Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol. Psychiatry67 , 657–665 (2010).
  • Nag N , MoriuchiJM, PeitzmanCG, WardBC, KolodnyNH, Berger-SweeneyJE. Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav. Brain Res.196 , 44–48 (2009).
  • Kerr B , SilvaPA, WalzK, YoungJI. Unconventional transcriptional response to environmental enrichment in a mouse model of Rett syndrome. PLoS One5 , e11534 (2010).
  • Burdge GC , LillycropKA, PhillipsES, Slater-JefferiesJL, JacksonAA, HansonMA. Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J. Nutr.139 , 1054–1060 (2009).
  • Rimland B . Controversies in the treatment of autistic children: vitamin and drug therapy. J. Child Neurol.3(Suppl.) , S68–S72 (1988).
  • James SJ , CutlerP, MelnykS et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr. 80 , 1611–1617 (2004).
  • Moretti P , SahooT, HylandK et al. Cerebral folate deficiency with developmental delay, autism, and response to folinic acid. Neurology 64 , 1088–1090 (2005).
  • Glaze DG , PercyAK, MotilKJ et al. A study of the treatment of Rett syndrome with folate and betaine. J. Child Neurol. 24 , 551–556 (2009).
  • Weaver IC , CervoniN, ChampagneFA et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7 , 847–854 (2004).
  • Lillycrop KA , PhillipsES, JacksonAA, HansonMA, BurdgeGC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr.135 , 382–386 (2005).
  • Kucharski R , MaleszkaJ, ForetS, MaleszkaR. Nutritional control of reproductive status in honeybees via DNA methylation. Science319 , 1827–1830 (2008).
  • Lillycrop KA , Slater-JefferiesJL, HansonMA, GodfreyKM, JacksonAA, BurdgeGC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br. J. Nutr.97 , 1064–1073 (2007).
  • Tsankova NM , BertonO, RenthalW, KumarA, NeveRL, NestlerEJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci.9 , 519–525 (2006).
  • Jessberger S , NakashimaK, ClemensonGD Jr et al. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J. Neurosci.27 , 5967–5975 (2007).
  • Dong E , NelsonM, GraysonDR, CostaE, GuidottiA. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc. Natl Acad. Sci. USA105 , 13614–13619 (2008).
  • Ma DK , JangMH, GuoJU et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323 , 1074–1077 (2009).
  • Lim D , BowdinSC, TeeL. Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod.24 , 741–747 (2009).
  • Bliek J , AldersM, MaasSM et al. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur. J. Hum. Genet. 17 , 1625–1634 (2009).
  • Fraga MF , BallestarE, PazMF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102 , 10604–10609 (2005).
  • Miyake K , YangC, MinakuchiY et al. Genomic, epigenomic, expression comparison of monozygotic twins discordant for Rett syndrome. PLoS One 8 , e66729(2013).
  • Hotta A , CheungAY, FarraN et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods 6 , 370–376 (2009).
  • Marchetto MC , CarromeuC, AcabA et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143 , 527–539 (2010).
  • Farra N , ZhangWB, PasceriP, EubanksJH, SalterMW, EllisJ. Rett syndrome induced pluripotent stem cell-derived neurons reveal novel neurophysiological alterations. Mol. Psychiatry17 , 1261–1271 (2012).
  • Muotri AR , MarchettoMC, CoufalNG et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468 , 443–446 (2010).
  • Luikenhuis S , GiacomettiE, BeardCF, JaenischR. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl Acad. Sci. USA101 , 6033–6038 (2004).
  • Guy J , GanJ, SelfridgeJ, CobbS, BirdA. Reversal of neurological defects in a mouse model of Rett syndrome. Science315 , 1143–1147 (2007).
  • Cheung AY , HorvathLM, CarrelL, EllisJ. X-chromosome inactivation in Rett syndrome human induced pluripotent stem cells. Front. Psychiatry3 , 24(2012).
  • Tchieu J , KuoyE, ChinMH et al. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7 , 329–342 (2010).
  • Ballas N , LioyDT, GrunseichC, MandelG. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci.12 , 311–317 (2009).
  • Kishi N , MacklisJD. MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Exp. Neurol.222 , 51–58 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.