81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantitative Identification of Differentially Methylated Loci Based on Relative Entropy for Matched Case–Control Data

, &
Pages 631-643 | Published online: 28 Nov 2013

References

  • Jones PA , BaylinSB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6) , 415–428 (2002).
  • Feinberg AP , TyckoB. Timeline – the history of cancer epigenetics. Nat. Rev. Cancer4(2) , 143–153 (2004).
  • Egger G , LiangGN, AparicioA, JonesPA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990) , 457–463 (2004).
  • Baylin SB , OhmJE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer6(2) , 107–116 (2006).
  • Kulis M , EstellerM. DNA methylation and cancer. Adv. Genet.70 , 27–56 (2010).
  • Tsai PC , SpectorTD, BellJT. Using epigenome-wide association scans of DNA methylation in age-related complex human traits. Epigenomics4(5) , 511–526 (2012).
  • Reik W , SantosF, DeanW. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology59(1) , 21–32 (2003).
  • Bird A . DNA methylation patterns and epigenetic memory. Genes Dev.16(1) , 6–21 (2002).
  • Feinberg AP . Phenotypic plasticity and the epigenetics of human disease. Nature447(7143) , 433–440 (2007).
  • Herman JG , BaylinSB. Mechanisms of disease: gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349(21) , 2042–2054 (2003).
  • Eden A , GaudetF, WaghmareA, JaenischR. Chromosomal instability and tumors promoted by DNA hypomethylation. Science300(5618) , 455 (2003).
  • Bibikova M , LeJ, BarnesB et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 1(1) , 177–200 (2009).
  • Dedeurwaerder S , DefranceM, CalonneE, DenisH, SotiriouC, FuksF. Evaluation of the Infinium Methylation 450K technology. Epigenomics3(6) , 771–784 (2011).
  • Sun Z , ChaiHS, WuY et al. Batch effect correction for genome-wide methylation data with Illumina Infinium platform. BMC Med. Genomics 4 , 84 (2011).
  • Maksimovic J , GordonL, OshlackA. SWAN: subset-quantile within array normalization for illumina infinium humanmethylation450 beadchips. Genome Biol.13(6) , R44 (2012).
  • Touleimat N , TostJ. Complete pipeline for Infinium Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics4(3) , 325–341 (2012).
  • Teschendorff AE , MarabitaF, LechnerM et al. A beta-mixture quantile normalisation method for correcting probe design bias in Illumina Infinium 450k. Bioinformatics 29(2) , 189–196 (2013).
  • Leek JT , StoreyJD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics3(9) , 161 (2007).
  • Teschendorff AE , ZhuangJ, WidschwendterM. Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics27(11) , 1496–1505 (2011).
  • Wang D , YanL, HuQ et al. IMA: an R package for high-throughput analysis of Illumina‘s 450K Infinium methylation data. Bioinformatics 28(5) , 729–730 (2012).
  • Irizarry RA , Ladd-AcostaC, WenB et al. The human colon cancer methylome shows similar hypo- and hyper-methylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2) , 178–186 (2009).
  • Byun HM , SiegmundKD, PanF et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet. 18(24) , 4808–4817 (2009).
  • Eckhardt F , LewinJ, CorteseR et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38(12) , 1378–1385 (2006).
  • Laird PW . Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet.11(3) , 191–203 (2010).
  • Rakyan VK , HildmannT, NovikKL et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2(12) , 2170–2182 (2004).
  • Meissner A , MikkelsenTS, GuHC et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205) , U766–U791 (2008).
  • Bock C . Analysing and interpreting DNA methylation data. Nat. Rev. Genet.13(10) , 705–719 (2012).
  • Wang S . Method to detect differentially methylated loci with case–control designs using Illumina arrays. Genet. Epidemiol.35(7) , 686–694 (2011).
  • Chen ZX , LiuQZ, NadarajahS. A new statistical approach to detecting differentially methylated loci for case control Illumina array methylation data. Bioinformatics28(8) , 1109–1113 (2012).
  • Huang H , ChenZ, HuangX. Age-adjusted nonparametric detection of differential DNA methylation with case–control designs. BMC Bioinformatics14 , 86 (2013).
  • Zhang Y , LiuH, LvJ et al. QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res. 39(9) , e58 (2011).
  • Xie H , WangM, De Andrade A et al. Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res.39(10) , 4099–4108 (2011).
  • He J , SunX, ShaoX, LiangL, XieH. DMEAS DNA methylation entropy analysis software. Bioinformatics29(16) , 2044–2045 (2013).
  • Kullback S , LeiblerRA. On information and sufficiency. Ann. Math. Stat.22(1) , 79–86 (1951).
  • Yan X , DengM, FungWK, QianM. Detecting differentially expressed genes by relative entropy. J. Theor. Biol.234(3) , 395–402 (2005).
  • Cho SB , KimJ, KimJH. Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinformatics10(1) , 109 (2009).
  • Du P , ZhangX, Huang C-C et al. Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics11(1) , 587 (2010).
  • Grant GR , LiuJM, StoeckertCJ. A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics21(11) , 2684–2690 (2005).
  • Jaffe AE , MurakamiP, LeeH et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 41(1) , 200–209 (2012).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.