253
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Placental DNA Methylation Alterations Associated with Maternal Tobacco Smoking at the RUNX3 Gene are also Associated with Gestational Age

, , , &
Pages 619-630 | Published online: 28 Nov 2013

References

  • Burdge GC , LillycropKA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu. Rev. Nutr.30 , 315–339 (2010).
  • Kulis M , EstellerM. DNA methylation and cancer. Adv. Genet.70 , 27–56 (2010).
  • Herz U , JoachimR, AhrensB, ScheffoldA, RadbruchA, RenzH. Prenatal sensitization in a mouse model. Am. J. Respir. Crit. Care Med.162(3 Pt 2) , S62–S65 (2000).
  • Prescott SL, Clifton V. Asthma and pregnancy: emerging evidence of epigenetic interactions in utero. Curr. Opin. Allergy Clin. Immunol.9(5) , 417–426 (2009).
  • Hollingsworth JW , MaruokaS, BoonK et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Investig.118(10) , 3462–3469 (2008).
  • Barker DJ . Maternal nutrition, fetal nutrition, and disease in later life. Nutrition13(9) , 807–813 (1997).
  • Barker DJ . In utero programming of chronic disease. Clin. Sci. (Lond.)95(2) , 115–128 (1998).
  • Silveira PP , PortellaAK, GoldaniMZ, BarbieriMA. Developmental origins of health and disease (DOHaD). J. Pediatr.83(6) , 494–504 (2007).
  • Hales CN , BarkerDJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia35(7) , 595–601 (1992).
  • Li YF , LangholzB, SalamMT, GillilandFD. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest127(4) , 1232–1241 (2005).
  • Rakyan VK , DownTA, BaldingDJ, BeckS. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet.12(8) , 529–541 (2011).
  • Bird A . Perceptions of epigenetics. Nature447(7143) , 396–398 (2007).
  • Prescott S , SafferyR. The role of epigenetic dysregulation in the epidemic of allergic disease. Clin. Epigenet.2(2) , 223–232 (2011).
  • Maccani MA , MarsitCJ. Epigenetics in the placenta. Am. J. Reprod. Immunol.62(2) , 78–89 (2009).
  • Hoyo C , FortnerK, MurthaAP et al. Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight. Cancer Causes Control 23(4) , 635–645 (2012).
  • Burris HH , Rifas-ShimanSL, BaccarelliA et al. Associations of LINE-1 DNA methylation with preterm birth in a prospective cohort study. J. Dev. Orig. Health Dis. 3(3) , 173–181 (2012).
  • Maccani MA , Avissar-WhitingM, BanisterCE, McGonnigalB, PadburyJF, MarsitCJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics5(7) , 583–589 (2010).
  • Koren G , KleinJ, FormanR, GrahamK, PhanMK. Biological markers of intrauterine exposure to cocaine and cigarette smoking. Dev. Pharmacol. Ther.18(3–4) , 228–236 (1992).
  • Lambers DS , ClarkKE. The maternal and fetal physiologic effects of nicotine. Semin. Perinatol.20(2) , 115–126 (1996).
  • Simpson WJ . A preliminary report on cigarette smoking and the incidence of prematurity. Am. J. Obstet. Gynecol.73(4) , 807–815 (1957).
  • Shiono PH , KlebanoffMA, RhoadsGG. Smoking and drinking during pregnancy. Their effects on preterm birth. JAMA255(1) , 82–84 (1986).
  • Olsen J . Cigarette smoking in pregnancy and fetal growth. Does the type of tobacco play a role? Int. J. Epidemiol.21(2) , 279–284 (1992).
  • Miller HC , HassaneinK, HensleighPA. Fetal growth retardation in relation to maternal smoking and weight gain in pregnancy. Am. J. Obstet. Gynecol.125(1) , 55–60 (1976).
  • Stroud LR , PasterRL, GoodwinMS et al. Maternal smoking during pregnancy and neonatal behavior: a large-scale community study. Pediatrics 123(5) , e842–e848 (2009).
  • Toschke AM , MontgomerySM, PfeifferU, Von Kries R. Early intrauterine exposure to tobacco-inhaled products and obesity. Am. J. Epidemiol.158(11) , 1068–1074 (2003).
  • von Kries R , BolteG, BaghiL, Toschke AM; GME Study Group. Prenatal smoking and childhood obesity – is maternal smoking in pregnancy the critical exposure? Int. J. Epidemiol.37(1) , 210–216 (2008).
  • Oken E , LevitanEB, GillmanMW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int. J. Obes. (Lond.)32(2) , 201–210 (2008).
  • Tong VT , JonesJR, DietzPM, D‘AngeloD, BombardJM. Trends in smoking before, during, and after pregnancy – Pregnancy Risk Assessment Monitoring System (PRAMS), United States, 31 sites, 2000–2005. MMWR Surveill. Summ.58(4) , 1–29 (2009).
  • Nelissen EC , Van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the placenta. Hum. Reprod. Update17(3) , 397–417 (2011).
  • Wilhelm-Benartzi CS , ChristensenBC, KoestlerDC et al. Association of secondhand smoke exposures with DNA methylation in bladder carcinomas. Cancer Causes Control 22(8) , 1205–1213 (2011).
  • Suter M , AbramoviciA, ShowalterL et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism59(10) , 1481–1490 (2010).
  • Suter M , MaJ, HarrisA et al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 6(11) , 1284–1294 (2011).
  • Novakovic B , YuenRK, GordonL et al. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics 12 , 529 (2011).
  • Banister CE , KoestlerDC, MaccaniMA, PadburyJF, HousemanEA, MarsitCJ. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics6(7) , 920–927 (2011).
  • Kuan PF , WangS, ZhouX, ChuH. A statistical framework for Illumina DNA methylation arrays. Bioinformatics26(22) , 2849–2855 (2010).
  • Johnson WE , LiC, RabinovicA. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics8(1) , 118–127 (2007).
  • Benjamini Y , HochbergY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. Series B (Methodol.)57(1) , 12 (1995).
  • Breton CV , ByunHM, WentenM, PanF, YangA, GillilandFD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med.180(5) , 462–467 (2009).
  • Antal S , SzendeB, LengyelJ, HidvégiEJ. Joint effects of cigarette smoking and irradiation in pregnant mice and their offspring. In Vivo23(2) , 267–272 (2009).
  • Takeshita M , KogaT, TakayamaK et al. CHFR expression is preferentially impaired in smoking-related squamous cell carcinoma of the lung, and the diminished expression significantly harms outcomes. Int. J. Cancer 123(7) , 1623–1630 (2008).
  • Haley KJ , Lasky-SuJ, ManoliSE et al. RUNX transcription factors: association with pediatric asthma and modulated by maternal smoking. Am. J. Physiol. Lung Cell. Mol. Physiol. 301(5) , L693–L701 (2011).
  • Fainaru O , ShseyovD, HantisteanuS, GronerY. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc. Natl Acad. Sci. USA102(30) , 10598–10603 (2005).
  • Fainaru O , WoolfE, LotemJ et al. Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23(4) , 969–979 (2004).
  • Wongtrakool C , WangN, HydeDM, RomanJ, SpindelER. Prenatal nicotine exposure alters lung function and airway geometry through α7 nicotinic receptors. Am. J. Respir. Cell Mol. Biol.46(5) , 695–702 (2012).
  • Haberg SE , StigumH, NystadW, NafstadP. Effects of pre- and postnatal exposure to parental smoking on early childhood respiratory health. Am. J. Epidemiol.166(6) , 679–686 (2007).
  • Lux AL , HendersonAJ, PocockSJ. Wheeze associated with prenatal tobacco smoke exposure: a prospective, longitudinal study. ALSPAC Study Team. Arch. Dis. Child.83(4) , 307–312 (2000).
  • Lannero E , WickmanM, PershagenG, NordvallL. Maternal smoking during pregnancy increases the risk of recurrent wheezing during the first years of life (BAMSE). Respir. Res.7 , 3 (2006).
  • Magnusson LL , OlesenAB, WennborgH, OlsenJ. Wheezing, asthma, hayfever, and atopic eczema in childhood following exposure to tobacco smoke in fetal life. Clin. Exp. Allergy35(12) , 1550–1556 (2005).
  • Stein RT , HolbergCJ, SherrillD et al. Influence of parental smoking on respiratory symptoms during the first decade of life: the Tucson Children‘s Respiratory Study. Am. J. Epidemiol. 149(11) , 1030–1037 (1999).
  • Prabhu N , SmithN, CampbellD et al. First trimester maternal tobacco smoking habits and fetal growth. Thorax 65(3) , 235–240 (2010).
  • Singh SP , BarrettEG, KalraR et al. Prenatal cigarette smoke decreases lung cAMP and increases airway hyperresponsiveness. Am. J. Res. Crit. Care Med. 168(3) , 342–347 (2003).
  • Gilliland FD , BerhaneK, LiYF, RappaportEB, PetersJM. Effects of early onset asthma and in utero exposure to maternal smoking on childhood lung function. Am. J. Respir. Crit. Care Med.167(6) , 917–924 (2003).
  • Kyrklund-Blomberg NB , CnattingiusS. Preterm birth and maternal smoking: risks related to gestational age and onset of delivery. Am. J. Obstet. Gynecol.179(4) , 1051–1055 (1998).
  • Shah NR , BrackenMB. A systematic review and meta-analysis of prospective studies on the association between maternal cigarette smoking and preterm delivery. Am. J. Obstet. Gynecol.182(2) , 465–472 (2000).
  • Cheshire M , KingstonM, McQuillanO, GittinsM. Are HIV-related factors associated with pre-term delivery in a UK inner city setting? J. Int. AIDS Soc.15(6) , 18223 (2012).
  • Woolf E , BrennerO, GoldenbergD, LevanonD, GronerY. Runx3 regulates dendritic epidermal T cell development. Dev. Biol.303(2) , 703–714 (2007).
  • Zamisch M , TianL, GrenninglohR et al. The transcription factor ETS1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J. Exp. Med. 206(12) , 2685–2699 (2009).
  • Chen LF . Tumor suppressor function of RUNX3 in breast cancer. J. Cell. Biochem.113(5) , 1470–1477 (2012).
  • Chen JS , KuoYB, ChouYP et al. Detection of autoantibodies against Rabphilin-3A-like protein as a potential biomarker in patient‘s sera of colorectal cancer. Clin. Chim. Acta Int. J. Clin. Chem. 412(15–16) , 1417–1422 (2011).
  • He L , ZhaoX, WangH et al. RUNX3 mediates suppression of tumor growth and metastasis of human CCRCC by regulating cyclin related proteins and TIMP-1. PLoS ONE7(3) , e32961 (2012).
  • Ito K , LimAC, Salto-TellezM et al. RUNX3 attenuates β-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell14(3) , 226–237 (2008).
  • Ito K , LiuQ, Salto-TellezM et al. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res.65(17) , 7743–7750 (2005).
  • Li QL , ItoK, SakakuraC et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109(1) , 113–124 (2002).
  • Lu XX , YuJL, YingLS et al. Stepwise cumulation of RUNX3 methylation mediated by Helicobacter pylori infection contributes to gastric carcinoma progression. Cancer 118(22) , 5507–5517 (2012).
  • Tang GH , SunSW, HeXS. Correlation of CpG methylation status of Runx3 with pathogenesis of gastric carcinoma. Zhonghua Bing Li Xue Za Zhi Chinese J. Pathol.41(5) , 314–319 (2012).
  • Tokunaga T , HayashiA, KadotaY et al. Regulation of Th-POK and Runx3 in T cell development in human thymoma. Autoimmunity 42(8) , 653–660 (2009).
  • Vogiatzi P , De Falco G, Claudio PP, Giordano A. How does the human RUNX3 gene induce apoptosis in gastric cancer? Latest data, reflections and reactions. Cancer Biol. Ther.5(4) , 371–374 (2006).
  • Xiao WH , LiuWW. Hemizygous deletion and hypermethylation of RUNX3 gene in hepatocellular carcinoma. World J. Gastroenterol.10(3) , 376–380 (2004).
  • Klunker S , ChongMM, MantelPY et al. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J. Exp. Med. 206(12) , 2701–2715 (2009).
  • Sanchez-Martin L , EstechaA, SamaniegoR, Sanchez-RamonS, VegaMA, Sanchez-MateosP. The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood117(1) , 88–97 (2011).
  • Inoue K , OzakiS, ShigaT et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5(10) , 946–954 (2002).
  • Puig-Kroger A , Aguilera-MontillaN, Martinez-NunezR et al. The novel RUNX3/p33 isoform is induced upon monocyte-derived dendritic cell maturation and downregulates IL-8 expression. Immunobiology 215(9–10) , 812–820 (2010).
  • Bae SC, Choi JK. Tumor suppressor activity of RUNX3.Oncogene23(24) , 4336–4340 (2004).
  • Tanaka Y , ImamuraJ, KanaiF et al. Runx3 interacts with DNA repair protein Ku70. Exp. Cell Res.313(15) , 3251–3260 (2007).
  • Mahapatra S , KleeEW, YoungCY et al. Global methylation profiling for risk prediction of prostate cancer. Clin. Cancer Res. 18(10) , 2882–2895 (2012).
  • Yanagawa N , TamuraG, OizumiH, TakahashiN, ShimazakiY, MotoyamaT. Promoter hypermethylation of tumor suppressor and tumor-related genes in non-small cell lung cancers. Cancer Sci.94(7) , 589–592 (2003).
  • Puig-Kroger A , CorbiA. RUNX3: a new player in myeloid gene expression and immune response. J. Cell. Biochem.98(4) , 744–756 (2006).
  • Wolff EM , LiangG, CortezCC et al. RUNX3 methylation reveals that bladder tumors are older in patients with a history of smoking. Cancer Res.68(15) , 6208–6214 (2008).
  • Guerrero-Preston R , GoldmanLR, Brebi-MievilleP et al. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 5(6) , 539–546 (2010).
  • Joubert BR , HabergSE, NilsenRM et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 120(10) , 1425–1431 (2012).
  • Jacob ST , MotiwalaT. Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy. Cancer Gene Ther.12(8) , 665–672 (2005).
  • Miller CC , McLoughlinDM, LauKF, TennantME, RogeljB. The X11 proteins, Aβ production and Alzheimer‘s disease. Trends Neurosci.29(5) , 280–285 (2006).
  • Ueki T , ToyotaM, SohnT et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 60(7) , 1835–1839 (2000).
  • Shen L , AhujaN, ShenY et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J. Natl Cancer Inst. 94(10) , 755–761 (2002).
  • Ogi K , ToyotaM, Ohe-ToyotaM et al. Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin. Cancer Res. 8(10) , 3164–3171 (2002).
  • Neubert G , von Au K, Drossel K et al. Angelman syndrome and severe infections in a patient with de novo 15q11-q13.1 deletion and maternally inherited 2q21.3 microdeletion. Gene512(2) , 453–455 (2013).
  • Babatz TD , KumarRA, SudiJ, DobynsWB, ChristianSL. Copy number and sequence variants implicate APBA2 as an autism candidate gene. Autism Res.2(6) , 359–364 (2009).
  • Kirov G , GumusD, ChenW et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum. Mol. Genet. 17(3) , 458–465 (2008).
  • Guffanti G , Strik Lievers L, Bonati MT et al. Role of UBE3A and ATP10A genes in autism susceptibility region 15q11-q13 in an Italian population: a positive replication for UBE3A. Psychiatry Res.185(1–2) , 33–38 (2011).
  • Le XF , GronerY, KornblauSM et al. Regulation of AML2/CBFA3 in hematopoietic cells through the retinoic acid receptor alpha-dependent signaling pathway. J. Biol. Chem. 274(31) , 21651–21658 (1999).
  • Watanabe K , SugaiM, NambuY et al. Requirement for Runx proteins in IgA class switching acting downstream of TGF-b1 and retinoic acid signaling. J. Immunol. 184(6) , 2785–2792 (2010).
  • Kullander S , KallenB. A prospective study of smoking and pregnancy. Acta Obstet. Gynecol. Scand.50 , 11 (1971).
  • Stillman RJ , RosenbergMJ, SachsBP. Smoking and reproduction. Fertil. Steril.46(4) , 545–566 (1986).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.