597
Views
1
CrossRef citations to date
0
Altmetric
Review

Stress and Anxiety Across the Lifespan: Structural Plasticity and Epigenetic Regulation

&
Pages 177-194 | Published online: 08 Apr 2013

References

  • Lupien SJ , McEwenBS, GunnarMR, HeimC. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci.10(6) , 434–445 (2009).
  • McEwen BS , GianarosPJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. NY Acad. Sci.1186 , 190–222 (2010).
  • McEwen BS , EilandL, HunterRG, MillerMM. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology62(1) , 3–12 (2012).
  • McEwen BS . Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann. NY Acad. Sci.1204(Suppl.) , E38–E59 (2010).
  • Bennett E , DiamondM, KrechD, RosenzweigM. Chemical and anatomical plasticity of brain. Science146 , 610–619 (1964).
  • Erickson KI , VossMW, PrakashRS et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl Acad. Sci. USA 108(7) , 3017–3022 (2011).
  • Wang X , MerzenichMM, SameshimaK, JenkinsWM. Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature378 , 71–75 (1995).
  • Draganski B , GaserC, KempermannG et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26(23) , 6314–6317 (2006).
  • Bezzola L , MerillatS, GaserC, JanckeL. Training-induced neural plasticity in golf novices. J. Neurosci.31(35) , 12444–12448 (2011).
  • McEwen BS . Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev.87 , 873–904 (2007).
  • McEwen BS . Stress and hippocampal plasticity. Annu. Rev. Neurosci.22 , 105–122 (1999).
  • Bloss EB , JanssenWG, McEwenBS, MorrisonJH. Interactive effects of stress and aging on structural plasticity in the prefrontal cortex. J. Neurosci.30(19) , 6726–6731 (2010).
  • Vyas A , MitraR, RaoBSS, ChattarjiS. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci.22 , 6810–6818 (2002).
  • Roozendaal B , McEwenBS, ChattarjiS. Stress, memory and the amygdala. Nat. Rev. Neurosci.10 , 423–433 (2009).
  • McEwen BS , GianarosPJ. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med.62 , 431–445 (2011).
  • Pruessner JC , BaldwinMW, DedovicK et al. Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood. NeuroImage 28 , 815–826 (2005).
  • Gurvits TV , ShentonME, HokamaH et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 40 , 1091–1099 (1996).
  • Cho K . Chronic ‘jet lag‘ produces temporal lobe atrophy and spatial cognitive deficits. Nat. Neurosci.4 , 567–568 (2001).
  • Davidson RJ , McEwenBS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat. Neurosci.15(5) , 689–695 (2012).
  • Holzel BK , CarmodyJ, EvansKC et al. Stress reduction correlates with structural changes in the amygdala. Soc. Cogn. Affect. Neurosci. 5(1) , 11–17 (2009).
  • Stahl SM . Psychotherapy as an epigenetic ‘drug‘: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J. Clin. Pharm. Ther.37(3) , 249–253 (2012).
  • McEwen BS . Protective and damaging effects of stress mediators. N. Engl. J. Med.338 , 171–179 (1998).
  • Nugent BM , McCarthyMM. Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology93(3) , 150–158 (2011).
  • Hoffmann A , SpenglerD. The lasting legacy of social stress on the epigenome of the hypothalamic–pituitary–adrenal axis. Epigenomics4(4) , 431–444 (2012).
  • Bale TL . Sex differences in prenatal epigenetic programming of stress pathways. Stress14(4) , 348–356 (2011).
  • Maccari S , Morley-FletcherS. Effects of prenatal restraint stress on the hypothalamus–pituitary–adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology32 , S10–S15 (2007).
  • Francis DD , DiorioJ, PlotskyPM, MeaneyMJ. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci.22 , 7840–7843 (2002).
  • Plotsky PM , ThrivikramanKV, NemeroffCB, CaldjiC, SharmaS, MeaneyMJ. Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology30 , 2192–2204 (2005).
  • Eiland L , McEwenBS. Early life stress followed by subsequent adult chronic stress potentiates anxiety and blunts hippocampal structural remodeling. Hippocampus22(1) , 82–91 (2012).
  • Caldji C , DiorioJ, MeaneyMJ. Variations in maternal care in infancy regulate the development of stress reactivity. Biol. Psychiat.48 , 1164–1174 (2000).
  • Akers KG , YangZ, DelvecchioDP et al. Social competitiveness and plasticity of neuroendocrine function in old age: influence of neonatal novelty exposure and maternal care reliability. PLoS ONE 3(7) , e2840 (2008).
  • Tang AC , Reeb-SutherlandBC, YangZ, RomeoRD, McEwenBS. Neonatal novelty-induced persistent enhancement in offspring spatial memory and the modulatory role of maternal self-stress regulation. J. Neurosci.31(14) , 5348–5352 (2011).
  • Francis D , DiorioJ, LiuD, MeaneyMJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science286 , 1155–1158 (1999).
  • Weaver ICG , CervoniN, ChampagneFA et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7 , 847–854 (2004).
  • Kaufman D , SmithELP, GohilBC et al. Early appearance of the metabolic syndrome in socially reared bonnet macaques. J. Clin. Endocrinol. Metab. 90 , 404–408 (2005).
  • Kaufman D , BanerjiMA, ShormanI et al. Early-life stress and the development of obesity and insulin resistance in juvenile bonnet macaques. Diabetes 56 , 1–5 (2007).
  • Mcgowan PO , SasakiA, D‘alessioAC et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12 , 241–243 (2009).
  • Danese A , McEwenBS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav.106(1) , 29–39 (2012).
  • Entringer S , EpelES, KumstaR et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc. Natl Acad. Sci. USA 108(33) , E513–E518 (2011).
  • Shonkoff JP , BoyceWT, McEwenBS. Neuroscience, molecular biology, and the childhood roots of health disparities. JAMA301 , 2252–2259 (2009).
  • Anda RF , ButchartA, FelittiVJ, BrownDW. Building a framework for global surveillance of the public health implications of adverse childhood experiences. Am. J. Prev. Med.39(1) , 93–98 (2010).
  • Evans GW , GonnellaC, MarcynyszynLA, GentileL, SalpekarN. The role of chaos in poverty and children‘s socioemotional adjustment. Psychol. Sci.16 , 560–565 (2004).
  • Lupien SJ , ParentS, EvansAC et al. Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc. Natl Acad. Sci. USA 108(34) , 14324–14329 (2011).
  • Farah MJ , SheraDM, SavageJH et al. Childhood poverty: Specific associations with neurocognitive development. Brain Res. 1110 , 166–174 (2006).
  • Danese A , McEwenBS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav.106(1) , 29–39 (2011).
  • Hart B , RisleyTR. Meaningful Differences in the Everyday Experience of Young American Children. Brookes Publishing Company, MD, USA (1995).
  • Pesonen AK , RaikkonenK. The lifespan consequences of early life stress. Physiol. Behav.106(5) , 722–727 (2012).
  • Roseboom TJ , PainterRC, van Abeelen AF, Veenendaal MV, De Rooij SR. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas70(2) , 141–145 (2011).
  • Heijmans BT , TobiEW, SteinAD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105(44) , 17046–17049 (2008).
  • Yehuda R , BellA, BiererLM, SchmeidlerJ. Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors. J. Psychiatr. Res.42(13) , 1104–1111 (2008).
  • Yehuda R , BiererLM. Transgenerational transmission of cortisol and PTSD risk. Prog. Brain Res.167 , 121–135 (2008).
  • Francis DD , MeaneyMJ. Maternal care and the development of stress responses. Curr. Opin. Neurobiol.9(1) , 128–134 (1999).
  • Wosiski-Kuhn M , StranahanAM. Opposing effects of positive and negative stress on hippocampal plasticity over the lifespan. Ageing Res. Rev.11(3) , 399–403 (2012).
  • Wosiski-Kuhn M , StranahanAM. Opposing effects of positive and negative stress on hippocampal plasticity over the lifespan. Ageing Res. Rev.11(3) , 399–403 (2011).
  • Koenig JI , WalkerCD, RomeoRD, LupienSJ. Effects of stress across the lifespan. Stress14(5) , 475–480 (2011).
  • Vallee M , MaccariS, DelluF, SimonH, Le Moal M, Mayo W. Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur. J. Neurosci.11(8) , 2906–2916 (1999).
  • Vallee M , MayoW, DelluF, Le Moal M, Simon H, Maccari S. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J. Neurosci.17(7) , 2626–2636 (1997).
  • Seckl JR . Glucocorticoids, developmental ‘programming‘ and the risk of affective dysfunction. Prog. Brain Res.167 , 17–34 (2008).
  • Cratty MS , WardHE, JohnsonEA, AzzaroAJ, BirkleDL. Prenatal stress increases corticotropin-releasing factor (CRF) content and release in rat amygdala minces. Brain Res.675(1–2) , 297–302 (1995).
  • Murmu MS , SalomonS, BialaY, WeinstockM, BraunK, BockJ. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur. J. Neurosci.24(5) , 1477–1487 (2006).
  • Lemaire V , KoehlM, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc. Natl Acad. Sci. USA97(20) , 11032–11037 (2000).
  • Coe CL , KramerM, CzehB et al. Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol. Psychiatry 54(10) , 1025–1034 (2003).
  • Fujioka T , SakataY, YamaguchiK, ShibasakiT, KatoH, NakamuraS. The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats. Neuroscience92(3) , 1079–1088 (1999).
  • Fujioka A , FujiokaT, IshidaY, MaekawaT, NakamuraS. Differential effects of prenatal stress on the morphological maturation of hippocampal neurons. Neuroscience141(2) , 907–915 (2006).
  • Fujioka T , FujiokaA, TanN et al. Mild prenatal stress enhances learning performance in the non-adopted rat offspring. Neuroscience 103(2) , 301–307 (2001).
  • Mueller BR , BaleTL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci.28(36) , 9055–9065 (2008).
  • Morgan CP , BaleTL. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J. Neurosci.31(33) , 11748–11755 (2011).
  • Oberlander TF , WeinbergJ, PapsdorfM, GrunauR, MisriS, DevlinAM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics3(2) , 97–106 (2008).
  • Jensen Pena C , MonkC, ChampagneFA. Epigenetic effects of prenatal stress on 11beta-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS ONE7(6) , e39791 (2012).
  • Marsit CJ , MaccaniMA, PadburyJF, LesterBM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS ONE7(3) , e33794 (2012).
  • Matrisciano F , TuetingP, DalalI et al. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology doi:https://doi.org/10.1016/j.bbr.2011.03.031 (2012) (Epub ahead of print).
  • Brown AS . The environment and susceptibility to schizophrenia. Prog. Neurobiol.93(1) , 23–58 (2011).
  • Koenig JI , KirkpatrickB, LeeP. Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology27(2) , 309–318 (2002).
  • Lemaire V , LamarqueS, Le Moal M, Piazza PV, Abrous DN. Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biol. Psychiatry59(9) , 786–792 (2006).
  • Dicorcia JA , TronickE. Quotidian resilience: exploring mechanisms that drive resilience from a perspective of everyday stress and coping. Neurosci. Biobehav. Rev.35(7) , 1593–1602 (2011).
  • Francis D , DiorioJ, LiuD, MeaneyMJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science286(5442) , 1155–1158 (1999).
  • Champagne FA , FrancisDD, MarA, MeaneyMJ. Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol. Behav.79(3) , 359–371 (2003).
  • Liu D , DiorioJ, TannenbaumB et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277(5332) , 1659–1662 (1997).
  • Champagne DL , BagotRC, Van Hasselt F et al. Maternal care and hippocampal plasticity. evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J. Neurosci.28(23) , 6037–6045 (2008).
  • Bagot RC , van Hasselt FN, Champagne DL, Meaney MJ, Krugers HJ, Joels M. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiol Learn. Mem.92(3) , 292–300 (2009).
  • Del Giudice M , EllisBJ, ShirtcliffEA. The Adaptive Calibration Model of stress responsivity. Neurosci. Biobehav. Rev.35(7) , 1562–1592 (2012).
  • Weaver IC , CervoniN, ChampagneFA et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7(8) , 847–854 (2004).
  • Cervoni N , SzyfM. Demethylase activity is directed by histone acetylation. J. Biol. Chem.276(44) , 40778–40787 (2001).
  • Weaver IC , D‘alessioAC, BrownSE et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J. Neurosci. 27(7) , 1756–1768 (2007).
  • Turner JD , MullerCP. Structure of the glucocorticoid receptor (NR3C1) gene 5‘ untranslated region: identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol.35(2) , 283–292 (2005).
  • Mcgowan PO , SasakiA, D‘alessioAC et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12(3) , 342–348 (2009).
  • Labonte B , YerkoV, GrossJ et al. Differential glucocorticoid receptor exon 1(b), 1(c), and 1(h) expression and methylation in suicide completers with a history of childhood abuse. Biol. Psychiatry 72(1) , 41–48 (2012).
  • Alt SR , TurnerJD, KlokMD et al. Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology 35(4) , 544–556 (2010).
  • Tyrka AR , PriceLH, MarsitC, WaltersOC, CarpenterLL. Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS ONE7(1) , e30148 (2012).
  • Labonte B , SudermanM, MaussionG et al. Genome-wide epigenetic regulation by early-life traumagenome epigenetic regulation by early-life trauma. Arch. Gen. Psychiatry 69(7) , 722–731 (2012).
  • Crudo A , PetropoulosS, MoisiadisVG et al. Prenatal synthetic glucocorticoid treatment changes DNA methylation States in male organ systems: multigenerational effects. Endocrinology 153(7) , 3269–3283 (2012).
  • Crews D , GilletteR, ScarpinoSV, ManikkamM, SavenkovaMI, SkinnerMK. Epigenetic transgenerational inheritance of altered stress responses. Proc. Natl Acad. Sci. USA109(23) , 9143–9148 (2012).
  • Skinner MK , AnwayMD, SavenkovaMI, GoreAC, CrewsD. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS ONE3(11) , e3745 (2008).
  • Guerrero-Bosagna C , SettlesM, LuckerB, SkinnerMK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE5(9) , e13100 (2010).
  • Dietz DM , LaplantQ, WattsEL et al. Paternal transmission of stress-induced pathologies. Biol. Psychiatry 70(5) , 408–414 (2011).
  • Walker AK , HawkinsG, SominskyL, HodgsonDM. Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: Implications for male and female germ lines. Psychoneuroendocrinology37(8) , 1320–1335 (2012).
  • Franklin TB , RussigH, WeissIC et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68(5) , 408–415 (2010).
  • Liu D , DiorioJ, DayJC, FrancisDD, MeaneyMJ. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci.3(8) , 799–806 (2000).
  • Eiland L , RamroopJ, HillMN, ManleyJ, McEwenBS. Chronic juvenile stress produces corticolimbic dendritic architectural remodeling and modulates emotional behavior in male and female rats. Psychoneuroendocrinology37(1) , 39–47 (2011).
  • Liu D , CaldjiC, SharmaS, PlotskyPM, MeaneyMJ. Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J. Neuroendocrinol.12(1) , 5–12 (2000).
  • Murgatroyd C , PatchevAV, WuY et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 12(12) , 1559–1566 (2009).
  • Kriaucionis S , BirdA. DNA methylation and Rett syndrome. Hum. Mol. Genet.12(Suppl. 2) , R221–R227 (2003).
  • Martinowich K , HattoriD, WuH et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646) , 890–893 (2003).
  • Chen WG , ChangQ, LinY et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302(5646) , 885–889 (2003).
  • Roth TL , LubinFD, FunkAJ, SweattJD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry65(9) , 760–769 (2009).
  • Simmons RK , HowardJL, SimpsonDN, AkilH, ClintonSM. DNA methylation in the developing hippocampus and amygdala of anxiety-prone versus risk-taking rats. Dev. Neurosci.34(1) , 58–67 (2012).
  • Sturman DA , MoghaddamB. The neurobiology of adolescence: changes in brain architecture, functional dynamics, and behavioral tendencies. Neurosci. Biobehav. Rev.35(8) , 1704–1712 (2011).
  • Mcgorry PD , PurcellR, GoldstoneS, AmmingerGP. Age of onset and timing of treatment for mental and substance use disorders: implications for preventive intervention strategies and models of care. Curr. Opin. Psychiatry24(4) , 301–306 (2011).
  • Blakemore SJ . Development of the social brain in adolescence. J. R. Soc. Med.105(3) , 111–116 (2012).
  • Gunnar MR , WewerkaS, FrennK, LongJD, GriggsC. Developmental changes in hypothalamus-pituitary-adrenal activity over the transition to adolescence: normative changes and associations with puberty. Dev. Psychopathol.21(1) , 69–85 (2009).
  • Romeo RD , KaratsoreosIN, McEwenBS. Pubertal maturation and time of day differentially affect behavioral and neuroendocrine responses following an acute stressor. Horm. Behav.50(3) , 463–468 (2006).
  • Romeo RD , BellaniR, KaratsoreosIN et al. Stress history and pubertal development interact to shape hypothalamic-pituitary-adrenal axis plasticity. Endocrinology 147(4) , 1664–1674 (2006).
  • Isgor C , KabbajM, AkilH, WatsonSJ. Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus14(5) , 636–648 (2004).
  • Trollope AF , Gutierrez-MecinasM, MifsudKR, CollinsA, SaundersonEA, ReulJM. Stress, epigenetic control of gene expression and memory formation. Exp. Neurol.233(1) , 3–11 (2012).
  • Lein ES , HawrylyczMJ, AoN et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124) , 168–176 (2007).
  • Zovkic IB , SweattJD. Epigenetic Mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology38(1) , 77–93 (2012).
  • Sultan FA , DayJJ. Epigenetic mechanisms in memory and synaptic function. Epigenomics3(2) , 157–181 (2011).
  • Griffith JS , MahlerHR. DNA ticketing theory of memory. Nature223(5206) , 580–582 (1969).
  • Crick F . Memory and molecular turnover. Nature312(5990) , 101 (1984).
  • Holliday R . Is there an epigenetic component in long-term memory? J. Theor. Biol.200(3) , 339–341 (1999).
  • Levenson JM , O‘RiordanKJ, BrownKD, TrinhMA, MolfeseDL, SweattJD. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem.279(39) , 40545–40559 (2004).
  • Miller CA , SweattJD. Covalent modification of DNA regulates memory formation. Neuron53(6) , 857–869 (2007).
  • Lubin FD , RothTL, SweattJD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci.28(42) , 10576–10586 (2008).
  • Koshibu K , GraffJ, BeullensM et al. Protein phosphatase 1 regulates the histone code for long-term memory. J. Neurosci. 29(41) , 13079–13089 (2009).
  • Koshibu K , GraffJ, MansuyIM. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience173 , 30–36 (2011).
  • Maddox SA , SchafeGE. Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn. Mem.18(9) , 579–593 (2011).
  • Fischer A , SananbenesiF, WangX, DobbinM, TsaiLH. Recovery of learning and memory is associated with chromatin remodelling. Nature447(7141) , 178–182 (2007).
  • Guan JS , HaggartySJ, GiacomettiE et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243) , 55–60 (2009).
  • Bredy TW , WuH, CregoC, ZellhoeferJ, SunYE, BaradM. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem.14(4) , 268–276 (2007).
  • Calfa G , ChapleauCA, CampbellS et al. HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons. Hippocampus 22(7) , 1493–1500 (2011).
  • Bilang-Bleuel A , UlbrichtS, ChandramohanY, De Carli S, Droste SK, Reul JM. Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: involvement in a glucocorticoid receptor-dependent behavioural response. Eur. J. Neurosci.22(7) , 1691–1700 (2005).
  • Clayton AL , RoseS, BarrattMJ, MahadevanLC. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J.19(14) , 3714–3726 (2000).
  • Cheung P , TannerKG, CheungWL, Sassone-CorsiP, DenuJM, AllisCD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell5(6) , 905–915 (2000).
  • Crosio C , HeitzE, AllisCD, BorrelliE, Sassone-CorsiP. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J. Cell Sci.116(Pt 24) , 4905–4914 (2003).
  • Chandramohan Y , DrosteSK, ArthurJS, ReulJM. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-d-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway. Eur. J. Neurosci.27(10) , 2701–2713 (2008).
  • Chandramohan Y , DrosteSK, ReulJM. Novelty stress induces phospho-acetylation of histone H3 in rat dentate gyrus granule neurons through coincident signalling via the N-methyl-D-aspartate receptor and the glucocorticoid receptor: relevance for c-fos induction. J. Neurochem.101(3) , 815–828 (2007).
  • Collins A , HillLE, ChandramohanY, WhitcombD, DrosteSK, ReulJM. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS ONE4(1) , e4330 (2009).
  • Papadopoulos A , ChandramohanY, CollinsA, DrosteSK, NuttDJ, ReulJM. GABAergic control of novelty stress-responsive epigenetic and gene expression mechanisms in the rat dentate gyrus. Eur. Neuropsychopharmacol.21(4) , 316–324 (2011).
  • McEwen BS . Stress and hippocampal plasticity. Annu. Rev. Neurosci.22 , 105–122 (1999).
  • Reul JM , HeskethSA, CollinsA, MecinasMG. Epigenetic mechanisms in the dentate gyrus act as a molecular switch in hippocampus-associated memory formation. Epigenetics4(7) , 434–439 (2009).
  • Gutierrez-Mecinas M , TrollopeAF, CollinsA et al. Long-lasting behavioral responses to stress involve a direct interaction of glucocorticoid receptors with ERK1/2-MSK1-Elk-1 signaling. Proc. Natl Acad. Sci. USA 108(33) , 13806–13811 (2011).
  • Nestler EJ , HymanSE. Animal models of neuropsychiatric disorders. Nat. Neurosci.13(10) , 1161–1169 (2010).
  • Tsankova NM , BertonO, RenthalW, KumarA, NeveRL, NestlerEJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci.9(4) , 519–525 (2006).
  • Tsankova NM , KumarA, NestlerEJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci.24(24) , 5603–5610 (2004).
  • Renthal W , MazeI, KrishnanV et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3) , 517–529 (2007).
  • Covington HE , 3rd, Maze I, Laplant QC et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci.29(37) , 11451–11460 (2009).
  • Laplant Q , VialouV, CovingtonHE 3rd et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci.13(9) , 1137–1143 (2010).
  • Elliott E , Ezra-NevoG, RegevL, Neufeld-CohenA, ChenA. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci.13(11) , 1351–1353 (2010).
  • Wilkinson MB , XiaoG, KumarA et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci. 29(24) , 7820–7832 (2009).
  • Covington HE , 3rd, Maze I, Sun H et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron71(4) , 656–670 (2011).
  • Maze I , CovingtonHE 3rd, Dietz DM et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science327(5962) , 213–216 (2010).
  • Hunter RG , MccarthyKJ, MilneTA, PfaffDW, McEwenBS. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc. Natl Acad. Sci. USA106(49) , 20912–20917 (2009).
  • Reed B , FangN, Mayer-BlackwellB et al. Chromatin alterations in response to forced swimming underlie increased prodynorphin transcription. Neuroscience 220 , 109–118 (2012).
  • Mcclintock B . The significance of responses of the genome to challenge. Science226(4676) , 792–801 (1984).
  • Hunter RG , MurakamiG, DewellS et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc. Natl Acad. Sci. USA 109(43) , 17657–17662 (2012).
  • Rusiecki JA , ChenL, SrikantanV et al. DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics 4(1) , 29–40 (2012).
  • Hedges DJ , BelancioVP. Restless genomes humans as a model organism for understanding host-retrotransposable element dynamics. Adv. Genet.73 , 219–262 (2011).
  • Uchida S , NishidaA, HaraK et al. Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. Eur. J. Neurosci. 27(9) , 2250–2261 (2008).
  • Vreugdenhil E , VerissimoCS, MarimanR et al. MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology 150(5) , 2220–2228 (2009).
  • Meerson A , CacheauxL, GoosensKA, SapolskyRM, SoreqH, KauferD. Changes in brain MicroRNAs contribute to cholinergic stress reactions. J. Mol. Neurosci.40(1–2) , 47–55 (2010).
  • Haramati S , NavonI, IsslerO et al. MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. J. Neurosci. 31(40) , 14191–14203 (2011).
  • Rinaldi A , VincentiS, De Vito F et al. Stress induces region specific alterations in microRNAs expression in mice. Behav. Brain Res.208(1) , 265–269 (2010).
  • Babenko O , GolubovA, IlnytskyyY, KovalchukI, MetzGA. Genomic and Epigenomic responses to chronic stress involve miRNA-mediated programming. PLoS ONE7(1) , e29441 (2012).
  • Mongrain V , HernandezSA, PradervandS et al. Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33(9) , 1147–1157 (2010).
  • Rajasethupathy P , AntonovI, SheridanR et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3) , 693–707 (2012).
  • Mccue AD , NuthikattuS, ReederSH, SlotkinRK. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet.8(2) , e1002474 (2012).
  • Perdiguero E , Sousa-VictorP, BallestarE, Munoz-CanovesP. Epigenetic regulation of myogenesis. Epigenetics4(8) , 541–550 (2009).
  • Sanosaka T , NamihiraM, NakashimaK. Epigenetic mechanisms in sequential differentiation of neural stem cells. Epigenetics4(2) , 89–92 (2009).
  • Sapolsky RM , KreyLC, McEwenBS. Corticosterone receptors decline in a site-specific manner in the aged rat brain. Brain Res.289(1–2) , 235–240 (1983).
  • Sapolsky RM , KreyLC, McEwenBS. The adrenocortical stress-response in the aged male rat: impairment of recovery from stress. Exp. Gerontol.18(1) , 55–64 (1983).
  • Sapolsky RM , KreyLC, McEwenBS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr. Rev.7(3) , 284–301 (1986).
  • Garrido P . Aging and stress: past hypotheses, present approaches and perspectives. Aging Dis2(1) , 80–99 (2012).
  • Lupien S , LecoursAR, SchwartzG et al. Longitudinal study of basal cortisol levels in healthy elderly subjects: evidence for subgroups. Neurobiol. Aging 17(1) , 95–105 (1996).
  • Foy MR , BaudryM, FoyJG, ThompsonRF. 17beta-estradiol modifies stress-induced and age-related changes in hippocampal synaptic plasticity. Behav. Neurosci.122(2) , 301–309 (2008).
  • Lee SW , ClemensonGD, GageFH. New neurons in an aged brain. Behav. Brain Res.227(2) , 497–507 (2012).
  • Burke SN , BarnesCA. Senescent synapses and hippocampal circuit dynamics. Trends Neurosci.33(3) , 153–161 (2010).
  • Heyn H , LiN, FerreiraHJ et al. Distinct DNA methylomes of newborns and centenarians. Proc. Natl Acad. Sci. USA 109(26) , 10522–10527 (2012).
  • Dosunmu R , AlashwalH, ZawiaNH. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech. Ageing Dev.133(6) , 435–443 (2012).
  • Thompson RF , AtzmonG, GheorgheC et al. Tissue-specific dysregulation of DNA methylation in aging. Aging Cell 9(4) , 506–518 (2010).
  • Hernandez DG , NallsMA, GibbsJR et al. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet. 20(6) , 1164–1172 (2011).
  • Numata S , YeT, HydeTM et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am. J. Hum. Genet. 90(2) , 260–272 (2012).
  • Rao JS , KeleshianVL, KleinS, RapoportSI. Epigenetic modifications in frontal cortex from Alzheimer‘s disease and bipolar disorder patients. Transl. Psychiatry2 , e132 (2012).
  • Anderson RM , ShanmuganayagamD, WeindruchR. Caloric restriction and aging: studies in mice and monkeys. Toxicol. Pathol.37(1) , 47–51 (2009).
  • Chouliaras L , Van Den Hove DL, Kenis G et al. Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav. Immun.25(4) , 616–623 (2010).
  • Patel NV , FinchCE. The glucocorticoid paradox of caloric restriction in slowing brain aging. Neurobiol. Aging23(5) , 707–717 (2002).
  • McEwen BS . Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann. NY Acad. Sci.933 , 265–277 (2001).
  • Szulwach KE , LiX, LiY et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14(12) , 1607–1616 (2011).
  • Chen H , DzitoyevaS, ManevH. Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restor. Neurol. Neurosci.30(3) , 237–245 (2012).
  • Graff J , ReiD, GuanJS et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483(7388) , 222–226 (2012).
  • Zeng Y , TanM, KohyamaJ et al. Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging. J. Neurosci. 31(49) , 17800–17810 (2011).
  • Peleg S , SananbenesiF, ZovoilisA et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979) , 753–756 (2010).
  • Walker MP , LaferlaFM, OddoSS, BrewerGJ. Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer‘s disease. Age (Dordr.) doi:10.1007/s11357-011-9375-5 (2012) (Epub ahead of print).
  • Castellano JF , FletcherBR, Kelley-BellB, KimDH, GallagherM, RappPR. Age-related memory impairment is associated with disrupted multivariate epigenetic coordination in the hippocampus. PLoS ONE7(3) , e33249 (2012).
  • Doyle JP , DoughertyJD, HeimanM et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4) , 749–762 (2008).
  • Heiman M , SchaeferA, GongS et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135(4) , 738–748 (2008).
  • Veenema AH . Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front. Neuroendocrinol.30(4) , 497–518 (2009).
  • Kolber BJ , WieczorekL, MugliaLJ. Hypothalamic-pituitary-adrenal axis dysregulation and behavioral analysis of mouse mutants with altered glucocorticoid or mineralocorticoid receptor function. Stress11(5) , 321–338 (2008).
  • Zhang D , YuZY, CruzP, KongQ, LiS, KoneBC. Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney Int.75(3) , 260–267 (2009).
  • ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science306(5696) , 636–640 (2004).
  • Spannhoff A , HauserAT, HeinkeR, SipplW, JungM. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem.4(10) , 1568–1582 (2009).
  • Kubicek S , O‘SullivanRJ, AugustEM et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25(3) , 473–481 (2007).
  • Hunter RG . Epigenetic effects of stress and corticosteroids in the brain. Front. Cell. Neurosci.6 , 18 (2012).
  • Magarinõs AM , McewenBS, FlüggeG, FuchsE. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci.16(10) , 3534–3540 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.