318
Views
0
CrossRef citations to date
0
Altmetric
Review

Personalized Medicine and Type 2 Diabetes: Lesson from Epigenetics

, , , , , & show all
Pages 229-238 | Published online: 09 May 2014

References

  • Nolan CJ , DammP , PrentkiM . Type 2 diabetes across generations: from pathophysiology to prevention and management . Lancet   378 ( 9786 ), 169 – 181 ( 2011 ).
  • International Diabetes Federation. Diabetes Atlas (5th Edition)  ( 2012 ). www.idf.org/sites/default/files/5E_IDFAtlasPoster_2012_EN.pdf
  • Smith RJ , NathanDM , ArslanianSA , GroopL , RizzaRA , RotterJI . Individualizing therapies in Type 2 diabetes mellitus based on patient characteristics: what we know and what we need to know . J. Clin. Endocrinol. Metab.   95 ( 4 ), 1566 – 1574 ( 2010 ).
  • Malandrino N , SmithRJ . Personalized medicine in diabetes . Clin. Chem.   57 ( 2 ), 231 – 240 ( 2011 ).
  • Drong AW , LindgrenCM , McCarthyMI . The genetic and epigenetic basis of Type 2 diabetes and obesity . Clin. Pharmacol. Ther.   92 ( 6 ), 707 – 715 ( 2012 ).
  • Travers ME , McCarthyMI . Type 2 diabetes and obesity: genomics and the clinic . Hum. Genet.   130 ( 1 ), 41 – 58 ( 2011 ).
  • Prudente S , DallapiccolaB , PellegriniF , DoriaA , TrischittaV . Genetic prediction of common diseases. Still no help for the clinical diabetologist!   Nutr. Metab. Cardiovasc. Dis.   22 ( 11 ), 929 – 936 ( 2012 ).
  • Kirchner H , OslerME , KrookA , ZierathJR . Epigenetic flexibility in metabolic regulation: disease cause and prevention ? Trends Cell Biol.   23 ( 5 ), 203 – 209 ( 2013 ).
  • Schwenk RW , VogelH , SchürmannA . Genetic and epigenetic control of metabolic health . Mol. Metab.   2 ( 4 ), 337 – 347 ( 2013 ).
  • Ungaro P , MirraP , OrienteFet al. Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1 . J. Biol. Chem.   287 ( 51 ), 42951 – 42961 ( 2012 ).
  • Ungaro P , TeperinoR , MirraPet al. Molecular cloning and characterization of the human PED/PEA-15 gene promoter reveal antagonistic regulation by hepatocyte nuclear factor 4alpha and chicken ovalbumin upstream promoter transcription factor II . J. Biol. Chem.   283 ( 45 ), 30970 – 30979 ( 2008 ).
  • Oriente F , FernandezDiaz LC , MieleCet al. Prep1 deficiency induces protection from diabetes and increased insulin sensitivity through a p160-mediated mechanism . Mol. Cell. Biol.   28 ( 18 ), 5634 – 5645 ( 2008 ).
  • Oriente F , IovinoS , CabaroSet al. Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase . Diabetes   60 ( 1 ), 138 – 147 ( 2011 ).
  • Oriente F , CabaroS , LiottiAet al. PREP1 deficiency downregulates hepatic lipogenesis and attenuates steatohepatitis in mice . Diabetologia   56 ( 12 ), 2713 – 2722 ( 2013 ).
  • Szyf M . The dynamic epigenome and its implications in toxicology . Toxicol. Sci.   100 ( 1 ), 7 – 23 ( 2007 ).
  • Cooper ME , El-OstaA . Epigenetics: mechanisms and implications for diabetic complications . Circ. Res.   107 ( 12 ), 1403 – 1413 ( 2010 ).
  • Paneni F , CostantinoS , VolpeM , LüscherTF , CosentinoF . Epigenetic signatures and vascular risk in Type 2 diabetes: a clinical perspective . Atherosclerosis   230 ( 2 ), 191 – 197 ( 2013 ).
  • Ng SF , LinRC , LaybuttDR , BarresR , OwensJA , MorrisMJ . Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring . Nature   467 ( 7318 ), 963 – 966 ( 2010 ).
  • Toperoff G , AranD , KarkJDet al. Genome-wide survey reveals predisposing diabetes Type 2-related DNA methylation variations in human peripheral blood . Hum. Mol. Genet.   21 ( 2 ), 371 – 383 ( 2012 ).
  • Korber P , BeckerPB . Nucleosome dynamics and epigenetic stability . Essays Biochem.   48 ( 1 ), 63 – 74 ( 2010 ).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond.   Nat. Rev. Genet.   13 ( 7 ), 484 – 492 ( 2012 ).
  • Curradi M , IzzoA , BadaraccoG , LandsbergerN . Molecular mechanisms of gene silencing mediated by DNA methylation . Mol. Cell. Biol.   22 ( 9 ), 3157 – 3173 ( 2002 ).
  • Fukuda H , SanoN , MutoS , HorikoshiM . Simple histone acetylation plays a complex role in the regulation of gene expression . Brief. Funct. Genomic Proteomic.   5 ( 3 ), 190 – 208 ( 2006 ).
  • Struhl K . Histone acetylation and transcriptional regulatory mechanisms . Genes Dev.   12 ( 5 ), 599 – 606 ( 1998 ).
  • McGee SL , SparlingD , OlsonAL , HargreavesM . Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle . FASEB J.   20 ( 2 ), 348 – 349 ( 2006 ).
  • Yu M , BlomstrandE , ChibalinAV , KrookA , ZierathJR . Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle . J. Physiol.   536 ( Pt 1 ), 273 – 282 ( 2001 ).
  • Guil S , EstellerM . DNA methylomes, histone codes and miRNAs: tying it all together . Int. J. Biochem. Cell. Biol.   41 ( 1 ), 87 – 95 ( 2009 ).
  • Cai Y , YuX , HuS , YuJ . A brief review on the mechanisms of miRNA regulation . Genomics Proteomics Bioinformatics   7 ( 4 ), 147 – 154 ( 2009 ).
  • Hammoud SS , NixDA , ZhangH , PurwarJ , CarrellDT , CairnsBR . Distinctive chromatin in human sperm packages genes for embryo development . Nature   460 ( 7254 ), 473 – 478 ( 2009 ).
  • Dunn GA , BaleTL . Maternal high-fat diet effects on third-generation female body size via the paternal lineage . Endocrinology   152 ( 6 ), 2228 – 2236 ( 2011 ).
  • Zhao J , GoldbergJ , BremnerJD , VaccarinoV . Global DNA methylation is associated with insulin resistance: a monozygotic twin study . Diabetes   61 ( 2 ), 542 – 546 ( 2012 ).
  • Ling C , DelGuerra S , LupiRet al. Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion . Diabetologia   51 ( 4 ), 615 – 622 ( 2008 ).
  • Yang BT , DayehTA , KirkpatrickCLet al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets . Diabetologia   54 ( 2 ), 360 – 367 ( 2011 ).
  • Volkmar M , DedeurwaerderS , CunhaDAet al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from Type 2 diabetic patients . EMBO J.   31 ( 6 ), 1405 – 1426 ( 2012 ).
  • Bell CG , FinerS , LindgrenCMet al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO Type 2 diabetes and obesity susceptibility locus . PLoS ONE   5 ( 11 ), e14040 ( 2010 ).
  • Gustafson B , HammarstedtA , HedjazifarS , SmithU . Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4 . Diabetes   62 ( 9 ), 2997 – 3004 ( 2013 ).
  • Musri MM , GomisR , PárrizasM . A chromatin perspective of adipogenesis . Organogenesis   6 ( 1 ), 15 – 23 ( 2010 ).
  • Pinnick KE , KarpeF . DNA methylation of genes in adipose tissue . Proc. Nutr. Soc.   70 ( 1 ), 57 – 63 ( 2011 ).
  • Kong L , ZhuJ , HanWet al. Significance of serum microRNAs in pre-diabetes and newly diagnosed Type 2 diabetes: a clinical study . Acta Diabetol. ( 1 ), 61 – 69 ( 2011 ).
  • Rosero S , Bravo-EganaV , JiangZet al. MicroRNA signature of the human developing pancreas . BMC Genomics   11 , 509 ( 2010 ).
  • Muhonen P , HolthoferH . Epigenetic and microRNA-mediated regulation in diabetes . Nephrol. Dial. Transplant.   24 ( 4 ), 1088 – 1096 ( 2009 ).
  • Correa-Medina M , Bravo-EganaV , RoseroSet al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas . Gene Expr. Patterns   9 ( 4 ), 193 – 199 ( 2009 ).
  • Ramachandran D , RoyU , GargS , GhoshS , PathakS , Kolthur-SeetharamU . Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets . FEBS J.   278 ( 7 ), 1167 – 1174 ( 2011 ).
  • Joglekar MV , PatilD , JoglekarVMet al. The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells . Islets   1 ( 2 ), 137 – 147 ( 2009 ).
  • Xie H , LimB , LodishHF . MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity . Diabetes   58 ( 5 ), 1050 – 1057 ( 2009 ).
  • Fred RG , Bang-BerthelsenCH , Mandrup-PoulsenT , GrunnetLG , WelshN . High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression . PLoS ONE   5 ( 5 ), e10843 ( 2010 ).
  • Poy MN , HausserJ , TrajkovskiMet al. miR-375 maintains normal pancreatic alpha- and beta-cell mass . Proc. Natl Acad. Sci. USA   106 ( 14 ), 5813 – 5818 ( 2009 ).
  • Zampetaki A , KiechlS , DrozdovIet al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in Type 2 diabetes . Circ. Res.   107 ( 6 ), 810 – 817 ( 2010 ).
  • Manolopoulos VG , RagiaG , TavridouA . Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective . Pharmacogenomics   12 ( 8 ), 1161 – 1191 ( 2011 ).
  • Caporali A , MeloniM , VöllenkleCet al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia . Circulation   123 ( 3 ), 282 – 291 ( 2011 ).
  • Lares MR , RossiJJ , OuelletDL . RNAi and small interfering RNAs in human disease therapeutic applications . Trends Biotechnol.   28 ( 11 ), 570 – 579 ( 2010 ).
  • Sutherland JE , CostaM . Epigenetics and the environment . Ann. NY Acad. Sci.   983 , 151 – 160 ( 2003 ).
  • Anway MD , CuppAS , UzumcuM , SkinnerMK . Epigenetic transgenerational actions of endocrine disruptors and male fertility . Science   308 ( 5727 ), 1466 – 1469 ( 2005 ). Erratum in: Science 328(5979), 690 (2010).
  • Morgan HD , SutherlandHG , MartinDI , WhitelawE . Epigenetic inheritance at the agouti locus in the mouse . Nat. Genet.   23 ( 3 ), 314 – 318 ( 1999 ).
  • Meaney MJ . Maternal care, gene expression and the transmission of individual differences in stress reactivity across generations . Ann. Rev. Neurosci.   24 , 1161 – 1192 ( 2001 ).
  • Francis DD , MeaneyMJ . Maternal care and the development of stress responses . Curr. Opin. Neurobiol.   9 ( 1 ), 128 – 134 ( 1999 ).
  • Weaver IC , CervoniN , ChampagneFAet al. Epigenetic programming by maternal behavior . Nat. Neurosci.   7 ( 8 ), 847 – 854 ( 2004 ).
  • Fraga MF , BallestarE , PazMFet al. Epigenetic differences arise during the lifetime of monozygotic twins . Proc. Natl Acad. Sci. USA   102 ( 30 ), 10604 – 10609 ( 2005 ).
  • McGowan PO , SasakiA , D’AlessioACet al. Epigenetic regulation of glucocorticoid receptor in human brain associates with childhood abuse . Nat. Neurosci.   12 ( 3 ), 342 – 348 ( 2009 ).
  • Philibert R , MadanA , AndersenA , CadoretR , PackerH , SandhuH . Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island . Am. J. Med. Genet. B Neuropsychiatr. Genet.   144B ( 1 ), 101 – 105 ( 2007 ).
  • Philibert RA , SandhuH , HollenbeckN , GunterT , AdamsW , MadanA . The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies . Am. J. Med. Genet. B Neuropsychiatr. Genet.   147B ( 5 ), 543 – 549 ( 2008 ).
  • Beach SR , BrodyGH , TodorovAA , GunterTD , PhilibertRA . Methylation at SLC6A4 is linked to family history of child abuse: an examination of the Iowa Adoptee sample . Am. J. Med. Genet. B Neuropsychiatr. Genet.   153B ( 2 ), 710 – 713 ( 2010 ).
  • Barrès R , OslerME , YanJet al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density . Cell Metab.   10 ( 3 ), 189 – 198 ( 2009 ).
  • Strakovsky RS , ZhangX , ZhouD , PanYX . Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats . J. Physiol.   589 ( Pt 11 ), 2707 – 2717 ( 2011 ).
  • Kelsall CJ , HoileSP , IrvineNAet al. Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis . PLoS ONE   7 ( 4 ), e34492 ( 2012 ).
  • Sandovici I , SmithNH , NitertMDet al. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets . Proc. Natl Acad. Sci. USA   108 ( 13 ), 5449 – 5454 ( 2011 ).
  • Zheng S , RolletM , PanYX . Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring . J. Nutr. Biochem.   23 ( 9 ), 1064 – 1071 ( 2012 ).
  • Zheng S , RolletM , PanYX . Maternal protein restriction during pregnancy induces CCAAT/enhancer-binding protein (C/EBPβ) expression through the regulation of histone modification at its promoter region in female offspring rat skeletal muscle . Epigenetics   6 ( 2 ), 161 – 170 ( 2011 ).
  • Jousse C , ParryL , Lambert-LanglaisSet al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome . FASEB J.   25 ( 9 ), 3271 – 3278 ( 2011 ).
  • Slater-Jefferies JL , LillycropKA , TownsendPAet al. Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring . J. Dev. Orig. Health Dis.   2 ( 4 ), 250 – 255 ( 2011 ).
  • Hoile SP , LillycropKA , GrenfellLR , HansonMA , BurdgeGC . Increasing the folic acid content of maternal or post-weaning diets induces differential changes in phosphoenolpyruvate carboxykinase mRNA expression and promoter methylation in rats . Br. J. Nutr.   108 ( 5 ), 852 – 857 ( 2012 ).
  • Burdge GC , HoileSP , LillycropKA . Epigenetics: are there implications for personalised nutrition?   Curr. Opin. Clin. Nutr. Metab. Care   15 ( 5 ), 442 – 447 ( 2012 ).
  • Roseboom TJ , vander Meulen JH , RavelliAC , OsmondC , BarkerDJ , BlekerOP . Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview . Mol. Cell Endocrinol.   185 ( 1–2 ), 93 – 98 ( 2001 ).
  • Heijmans BT , TobiEW , SteinADet al. Persistent epigenetic differences associated with prenatal exposure to famine in humans . Proc. Natl Acad. Sci. USA   105 ( 44 ), 17046 – 17049 ( 2008 ).
  • Tobi EW , LumeyLH , TalensRPet al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific . Hum. Mol. Genet.   18 ( 21 ), 4046 – 4053 ( 2009 ).
  • Ravelli AC , vander Meulen JH , MichelsRP , OsmondC , BarkerDJ , Hales , CN   BlekerOP . Glucose tolerance in adults after prenatal exposure to famine . Lancet   351 ( 9097 ), 173 – 177 ( 1998 ).
  • Talens RP , JukemaJW , TrompetSet al. Hypermethylation at loci sensitive to the prenatal environment is associated with increased incidence of myocardial infarction . Int. J. Epidemiol.   41 ( 1 ), 106 – 115 ( 2012 ).
  • Pembrey ME , BygrenLO , KaatiGet al. Sex-specific, male-line transgenerational responses in humans . Eur. J. Hum. Genet.   14 ( 2 ), 159 – 166 ( 2006 ).
  • Godfrey KM , SheppardA , GluckmanPDet al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity . Diabetes   60 ( 5 ), 1528 – 1534 ( 2011 ).
  • Thune I , BrennT , LundE , GaardM . Physical activity and the risk of breast cancer . N. Engl. J. Med.   336 ( 18 ), 1269 – 1275 ( 1997 ).
  • Barrès R , YanJ , EganBet al. Acute exercise remodels promoter methylation in human skeletal muscle . Cell Metab.   15 ( 3 ), 405 – 411 ( 2012 ).
  • Rönn T , VolkovP , DavegårdhCet al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue . PLoS Genet.   9 ( 6 ), e1003572 ( 2013 ).
  • Nitert MD , DayehT , VolkovPet al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with Type 2 diabetes . Diabetes   61 ( 12 ), 3322 – 3332 ( 2012 ).
  • Barres R , KirchnerH , RasmussenMet al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation . Cell Rep.   3 ( 4 ), 1020 – 1027 ( 2013 ).
  • Schellenberg ES , DrydenDM , VandermeerB , HaC , KorownykC . Lifestyle interventions for patients with and at risk for Type 2 diabetes: a systematic review and meta-analysis . Ann. Intern. Med.   159 ( 8 ), 543 – 551 ( 2013 ).
  • Johnson M , JonesR , FreemanCet al. Can diabetes prevention programmes be translated effectively into real-world settings and still deliver improved outcomes? A synthesis of evidence . Diabet. Med.   30 ( 1 ), 3 – 15 ( 2013 ).
  • Gomez A , Ingelman-SundbergM . Epigenetic and microRNA-dependent control of cytochrome P450 expression: a gap between DNA and protein . Pharmacogenomics   10 ( 7 ), 1067 – 1076 ( 2009 ).
  • Mohri T , NakajimaM , FukamiT , TakamiyaM , AokiY , YokoiT . Human CYP2E1 is regulated by miR-378 . Biochem. Pharmacol.   79 ( 7 ), 1045 – 1052 ( 2010 ).
  • Devlin AH , ThompsonP , RobsonT , McKeownSR . Cytochrome P450 1B1 mRNA untranslated regions interact to inhibit protein translation . Mol. Carcinog.   49 ( 2 ), 190 – 199 ( 2010 ).
  • Pan YZ , GaoW , YuAM . MicroRNAs regulate CYP3A4 expression via direct and indirect targeting . Drug Metab. Dispos.   37 ( 10 ), 2112 – 2117 ( 2009 ).
  • Tsuchiya Y , NakajimaM , TakagiS , TaniyaT , YokoiT . MicroRNA regulates the expression of human cytochrome P450 1B1 . Cancer Res.   66 ( 18 ), 9090 – 9098 ( 2006 ).
  • Suter M , AbramoviciA , ShowalterLet al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression . Metabolism   59 ( 10 ), 1481 – 1490 ( 2010 ).
  • Zierath JR , BarrèsRE . Nutritional status affects the epigenomic profile of peripheral blood cells . Epigenomics   3 ( 3 ), 259 – 260 ( 2011 ).
  • Semiz S , DujicT , CausevicA . Pharmacogenetics and personalized treatment of Type 2 diabetes . Biochem. Med. (Zagreb)   23 ( 2 ), 154 – 171 ( 2013 ).
  • Johnson JA , BurkleyBM , LangaeeTY , Clare-SalzlerMJ , KleinTE , AltmanRB . Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array . Clin. Pharmacol. Ther.   92 ( 4 ), 437 – 439 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.